On July 20, 1969, the first humans landed on the surface of the moon. This was an incredible achievement. The Apollo spacecrafts were guided by technology that had less computing power than a modern smartphone. The equations used to plot the course to the moon were devised by Isaac Newton in the 1600s. The lunar landing is a milestone that links the Scientific Revolution of the 15th and 16th hundreds and 20th century science. For science to have progressed this far, it had to be rescued from centuries of insignificance.
The Scientific Revolution refers to an era when mankind developed the methods that led to our modern scientific view. Ancient Greece started the scientific process, and then it stalled during the Middle Ages when human progress remained at a standstill. The Scientific Revolution occurred mainly in Europe, and it coincides with the Age of Enlightenment. This was an age of reason, when individuals searched for truth by their own means. The revolutionary scientists (natural philosophers) did not blindly accept old ideas; they came to their own conclusions.
Breaking the Spell of Tradition
For much of human history, tradition was the authority. The rules were set by the state or the religion of the time and they were strictly enforced. During the Middle Ages the Catholic Church was the unquestioned intellectual authority. Free expression of ideas was not tolerated and the main source of knowledge was church doctrine. This not only applied to spiritual matters, but also to nature and the universe.
Progress was not deemed to be possible by human methods. Only God had the power to intervene and change the direction of human life. The goal of the church was to maintain the ideals outlined in scripture, and not to question whether new ways could make life better. I suspect that a large portion of society had accepted their lot in life; however, some free thinkers questioned the authority of tradition. A new way of thinking about humankind’s ability and responsibility for directing life began. This was the impetus for the Scientific Revolution.
The Methods and Mathematics of Galileo and Newton
Galileo died in 1642, the same year that Newton was born. These two men were probably the most influential scientists of the Scientific Revolution. Both men have been called “the father of science.” This may be an oversimplification of history, as there was surely a movement, which many contributed to the scientific cause. Nevertheless, Galileo and Newton stand out with both their discoveries, and their methods.
If relying on old books and tradition was not sufficient, a new way was needed to understand the world. Galileo came before Newton: Galileo established observation and experiment as the pillars of science. In order to determine if something was true, it had to be tested. Even the senses were considered unreliable in some cases. He also used mathematics to calculate the motion of objects. The idea that nature could be described using numbers was revolutionary. The scientific method had taken root.
Galileo’s confrontation with the church is well-known and is an iconic turning point in history. For 1500 years the church supported an earth-centered model of the universe; it was considered heresy to challenge this view. In 1632, Galileo published his most famous work, Dialogue Concerning the Two Chief World Systems. He wrote a dialogue showing both sides (earth-centered model and sun-centered model) hoping it would avoid church censorship. However, it was clear that Galileo supported Copernicus’ model from an earlier publication in 1543. This model placed the sun stationary at the center, with the earth, planets and stars orbiting the sun. The church banded the book and sentenced Galileo to house arrest, where he spent the last decade of his life.
Galileo came to his conclusion because the evidence led him to do so. Truth was not a matter of faith, belief or tradition. Ultimately, objective evidence was the determining factor. Using a telescope, which he built, he observed 4 moons orbiting Jupiter. This was proof that not every celestial body circled the earth. He also observed the phases of Venus (similar to lunar phases). The phases were caused by Venus’ orbit around the sun inside the Earth’s orbit. He concluded that the Copernican Model of the universe was the correct model. Galileo was right, and the world eventually agreed with him.
If there was any doubt that science could explain the world, by the time Isaac Newton was done it had been dispelled. According to some present scientists, Newton was the most brilliant scientist that ever lived. In 1687, he published the Principia Mathematica, where he disclosed his law of universal gravitation and the three laws of motion. With Newton’s laws one could calculate the motion of objects in both the heavens and the earth, including the trajectory of a spaceship flying to the moon. For Newton, God’s hand was present in the laws of nature.
Although not as publicized, Newton also made influential discoveries in optics. He discovered that white light is a mixture of the different colors of the rainbow. White light can be spread out into a spectrum of colors. This phenomenon would prove to be critical in charting the universe a few centuries later. We now know a tremendous amount about the large-scale universe because scientists can decode light. Information can be extracted from the light of distant galaxies. This is done by studying the fine details of the spectrum.
Galileo, Newton and the revolutionary scientists showed that the book of nature was accessible to human understanding. And the avenue was the scientific method and mathematics. This was just the beginning, as Newton realized:
“I was like a boy playing on the sea-shore, and diverting myself now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.”
Transforming the World
The early scientists were like the pioneers that sailed to discover the New World. The explorers were trying to claim and settle new lands, but they could not predict the types of civilizations that would follow. Similarly, the initial goal of science was to understand how nature worked. The applied sciences would come later. Newton never imagined that his equations would be used to place a man on the moon. The physicists of the early 1900s that studied the atom did not foresee the internet and smartphones.
The first step was to discover the laws that governed the universe. Then gradually it became apparent that nature could be manipulated for man’s benefit. Science had a say in the philosophical questions by challenging long-held beliefs, but it also changed humanity’s way of life. In the last 500 years the world has seen more changes than any other time period. This is mainly due to the Scientific Revolution and the Industrial and Technological Revolutions that followed.
References: Yuval Noah Harari, Sapiens (Canada: Signal Books an imprint of MeClelland & Stewart, 2014).
Brainy Quote, http://www.brainyquote.com/quotes/authors/i/isaac_newton.html, 2001-2015 BrainyQuote, June 14, 2015.
Sparknotes, http://www.sparknotes.com/history/european/scientificrevolution/context.html, 2015 SparkNotes LLC, June 14, 2015.
Nova – Galileo’s Battle for the Heavens (PBS Documentary, https://www.youtube.com/watch?v=VnEH9rbrIkk, Published on Sept. 30, 2014.
Secret Life of Issac Newton (HD) – New Full Documentary, https://www.youtube.com/watch?v=YPRV1h3CGQk, Published on June 9, 2014.