How not Why

We are often compelled to ask why? Why this and why that? Usually our why questions are directed towards everyday occurrences, and we ask them out of curiosity. For example, why is there thunder and lightning? Why is the sky blue? Why are there high and low tides? As far as the tides go, high and low tides are caused by a combination of gravitational effects, which are exerted by the moon, the sun and the rotation of the earth. That being said, I have not provided an answer for why there are high and low tides. I have explained in simple terms, how high and low tides occur. On these relatively simple questions we ask why, although I think we really mean how. What we are looking for is the reasons or the causes behind the observed reality. We are not searching for a hidden meaning or purpose for the tides. But rather for how high and low tides occur, the causes for the tides, or the thunder and lightning, or the blue sky.

Having said that, other “why” questions are of a more profound nature, and they generally come in two categories. One type of question relates to the deeper mysteries of life. For example, why are we here? Why is life the way it is? And why is there a universe in the first place? Although we may ponder these or other similar questions from time to time, we can usually put them aside without too much trouble. There is some value in just asking the questions, even though there may be no complete resolution.

A second category of questions, which are more disturbing, arises primarily when an event impacts us in a negative way. That is when we tend to ask: why do bad things happen? As opposed to the simpler questions, like the ocean tides, when it comes to the bigger questions, we ask why—and we really mean why. We are looking for a meaning or purpose behind an event that has transpired—an underlying order behind the apparent chaos of our present situation. Conversely, when something happens that we perceive as positive, we seldom ask why it came about. I have yet to hear someone question why their day went so well.

It is very common for people that are faced with a tragedy to ask why. It could be the death of a loved one, or an illness that compels us to ask why. The trouble with this line of questioning is that it very rarely leads to a satisfactory answer. It may be comforting to believe that “everything happens for a reason,” as the well-known phrase goes, however, there may be no why (at least no why that the human mind can comprehend). The random element in life alone, if not for countless other factors, makes it inevitable that bad things will happen. Instead of saying that “everything happens for a reason,” we could easily reverse the phrase and say that “there are reasons (causes) for everything that happens.” We may be able to find the cause (the how) for an event, but trying to find why something happened will leave us scratching our heads.

This reminds me of a conversation I had with a couple of friends while watching the evening news. The newscast was reporting on a tragic motor vehicle accident that resulted in several young people losing their lives. There had been a snowstorm the night of the accident and the safety of the vehicle involved was in question, namely the condition of the tires. One of my friends commented, “I can’t understand why young people, with so much life ahead of them, had to die in this way.” The other friend responded by stating the obvious, “It’s just tires and ice.” The accident was caused by icy road conditions, and worn out tires. Although it may have sounded cold and unsympathetic, perhaps he was right. In most cases, the only answer available to us is how.

In fact, all investigations focus on “how” questions. For example, when an airline crashes, which usually results in casualties, investigators will focus their attention on determining how the plane crashed. The obvious reason is to prevent a future accident, but also to provide the grieving family members with an explanation. The people that are closely connected to the tragedy may also seek comfort by asking why the plane had to crash, and why those people had to die. Once again, the only attainable answer will be in determining how the plane crashed. As for the passengers, regrettably, they were simply at the wrong place at the wrong time.

The strange thing about the randomness in life is that when we are not personally or emotionally involved, we have no problem with it. I doubt that anyone would question why a coin toss turns up head or tails. We all accept without hesitation, the random nature of a coin toss. Keep in mind that the same natural laws that determine the outcome of a coin toss, also apply to the rest of our lives. The random element in life will also lead to inequalities, which may be slight or seem grossly unfair. This may lead someone to ask: “Why is life so unfair?” In some ways life is a numbers game, much like a lottery. Sometimes your number comes up, and sometimes it does not. Look at it this way, if I had 100 dollars to give away, and I chose to give it away by lottery, would anyone say it was unfair?

Aside from our efforts to either prevent or alleviate bad things from happening, it may be that bad things happen for the simplest of reasons. There is no apparent mechanism to prevent it. Another point worth noting is that good and bad are sometimes subjective. Even a single event can be perceived as good by some people and bad by others. This is usually based on how an event personally impacts each individual. Aside from our egocentric viewpoint, there is no reason to believe that the universe will favor one individual above anyone else or anything else—there is no empirical evidence to support it.

For many years, I have asked why, especially when my life was not going as I wanted. Even after considerable reflection, I have found no suitable answer to any of my why questions. There may or may not be an ultimate reason for life’s unfolding. But if there is a why, it lies beyond human comprehension. And for me, when I started asking how, I was able to make some progress on the bigger questions. How did we get here? How is life the way it is? How did the universe come to be? And of course, how do bad things happen? So from now on when I am inclined to ask why, I try to catch myself, and ask how.


 

Seeing the Forest for the Trees

It is human nature to have goals, dreams, and expectations. Our ability to project into the future, to plan, imagine and create is a unique quality that separates us from other animals. That being said, it can also be a double-edged sword. On the one hand, in order to accomplish a goal we need to project how we will get from here to there. On the other hand, in spite of our best efforts, there is no guarantee we will ever get there. In fact, there are often numerous obstacles to overcome from the moment we conceive a goal. Contrary to some peoples’ belief, the universe is not conspiring in our behalf. We are but one moving part in a multitude of moving parts. There are many factors that help us, but there are many others that do not.

The odds of reaching a goal increase when many people work towards a common objective. Many of mankind’s great accomplishments have come with contributions from many people. The advances in technology and medicine, and the development of democracy and civil societies are prime examples. Unfortunately, many people have also worked together for destructive aims, which has led to horrific results. The human cost of war immediately comes to my mind. It is difficult to quantify how our individual efforts impact the grand scheme of things. Life unfolds as a result of all its variables.

The modern way of life can obscure our ability to see that we are part of a natural system, and subjected to the same laws. The way our life unfolds is not all that different from how a tree grows in a forest. The analogy is not perfect; however, I think it is helpful in making my point. The genetic information contained within a seed could be compared to a plan, as all the information necessary to construct a tree is present. From the beginning there are many factors outside of this plan that will affect its eventual growth. Will the seed fall on fertile soil? Will the weather conditions be favorable? What will its immediate environment be like? And if the seed sprouts, will it be destroyed by animals, insects, or diseases?

Even if the tree takes root, and grows to a substantial height, it is still susceptible to the conditions of its environment. There are many events surrounding the tree that are random.  Nevertheless, all living things in the forests have a plan of their own (their genetic information), and a drive towards their fulfillment. The state of the forests is determined by the interactions of every life form, as well as the inanimate substances in its environment. There is no plan for the forest as a whole, but the blending of countless plans, which creates a whole.

What the tree needs to grow and prosper is always present in the forest: energy from the sun, nourishment from soil and water, necessary processes from microbes, and protection provided by nearby trees. The environment of the forests will determine which seed (or tree) will grow, and which will not. The same can be said for every living thing in the forest.

Long before we begin to make plans for our lives, many things are already in place. It is our genes that first determine the potential for our lives. Even before birth the traits that we have acquired are set. Beyond these genetic traits the events in our lives are mostly random. For example: we don’t choose who we are, where we are born, and the time period. We also don’t choose our parents, family, and our community. The people we come in contact with and world events also have an impact. Our lives are formed by the environment that we are exposed to. Prosperity, poverty, peace, or warfare, whatever the case may be, is mainly beyond our control. Nothing in nature is in complete control and neither are we. Even our own body is primarily beyond our control, as it is maintained by subconscious processes. We are mostly unaware of the internal functions of our body, and we pay little attention to them until something goes wrong. And just as vital to our existence is the outside world. The air we breathe, the energy from the sun, and the food supply are but a few of many outside factors that are essential for life.

The comparison of the tree in the forest can make us aware that we are not all that different or separate from nature. But with humans, there is a difference in the sense that people have a degree of free will. Some would argue that what we perceive as free will is nothing more than an illusion, but let’s just say that we have, at best, a degree of free will. We have the ability to respond creatively to our environment. We can make choices, learn from the past, and make plans for the future. Our imagination has no bounds, therefore we can dream up any number of possibilities for our lives. That being said, there is a risk that what we imagine or dream of may not always be realistic. I can certainly relate to that way of thinking. When I was younger, I had a tendency to believe that events in my life would unfold as I had planned. As I age, I now realize that life is much bigger than I, and the world is not concerned with my plans. I found that when my primary focus was on my expectations, I would often end up disappointed. Things rarely work out as I had envisioned. What I was doing was focusing on life’s results rather than life’s process.

I now view goals and dreams as potential destinations. They are necessary in the sense that they give us direction. It is obvious that random and directionless processes do not lead to anything constructive. Therefore, we do need to make plans despite the uncertainty of going forward. What we are really choosing are paths, but we cannot know where they will eventually lead. No matter how much we plan, there are always numerous factors outside of our control that will influence our plan. Think of it this way: with all the plans of other people and their actions, as well as natural events, what are the odds that the outside world will fit the plan we have devised in our minds? And if, at a given time everything did come together just right, how long would we be able to sustain it?

The plans that we make for our lives are presumably forms of order that we envision. The more in depth the extent of the planning is, the more variables will come into play. It’s quite simple, the more factors involved, the more difficult it becomes to predict or direct the outcome. In order to move ahead with confidence, it is important to have an open perspective on goals. Life’s unpredictability and uncertainty is the cause for much anxiety and worry, however, it is intensified by our expectations. For me, my expectations have probably caused more anxiety than any other reason I can think of. Although it is difficult to pull off, I find that when I live with no expectations, I am more at peace and more productive in general.

Let me clarify that last statement. I did not say low expectations; I said no expectations. The pitfall with expectations is twofold. One is that you might aim too high, the other, aim too low. This means that instead of focusing on one particular outcome, which can be very limiting, I try to be open to a number of future outcomes. When I am moving in a path that I am pleased with, and actively engaged in life, my life seems to flow freely. I am open to receive the blessings that may come my way, as they usually come unplanned or unexpected. I am also able to place my full attention to the present task at hand, unencumbered by future expectations. Or perhaps the biggest gain is in letting go of the fear of not meeting those expectations; not only my expectations, but also the expectations of others as I perceive them.

Seeing the forest for the trees is recognizing that our life is a minor contribution to an immensely larger system. We are like individual trees in a large forest. Although the forest needs trees, no one tree is absolutely necessary. The forest does not differentiate or favor one tree from another. The sun shines on all; the clouds rain on all. We are not directors of our lives, and the only real control we have is in our ability to respond to events as they arise. Regrettably we can’t make life into what we want it to be. It is a harsh reality that one unfortunate incident can drastically change our lives, or even end it, no matter what we have going for us. There is no certainty beyond the present moment, and the only thing we can expect from life is the unexpected.

The best we can do is to accept life on its own terms, and try to respond appropriately. We can achieve this by being actively engaged in life’s present realities, and moving in a desirable direction. This should at least allow us to move forward, regardless of the uncertainty that lies ahead. We may or may not get to where we want to go. We use different words to define that place: goals, dreams, success, happiness, peace and fulfillment. However, in time we may realize that these final destinations do not matter absolutely. We may also realize that the fullness of life can only be found in the journey and not in the final destinations.


 

The Universe Revealed Through Modern Science

Physical laws have existed since the beginning of time, but they had to be discovered for science to become relevant. Scientific knowledge was built mainly by a series of small advances and adjustments, however, a few major discoveries by a few scientists have altered the course of the scientific endeavor. The age of modern science was pioneered by men like Copernicus, Galileo and Kepler. They began to examine the patterns in nature, and discovered that in some situations the workings of nature could be explained, and even predicted. They found that nature’s harmony was governed by physical laws, which were at least partly accessible to human comprehension. They studied the motion of objects on earth, and then turned their attention to the heavens. They charted the movement of the celestial bodies in great detail, and discovered that the motion of the celestial bodies could also be predicted. The gateway to scientific discovery had been opened—the universe would soon begin to reveal its most profound secrets.

In the early years, it was Isaac Newton’s insight that stood above all others. He discovered gravity as the force responsible for the motion of the moon and the planets. And as the story goes, the same force responsible for an apple falling from a tree. In 1687, he published the Principia Mathematica, where he disclosed his law of universal gravitation and the three laws of motion. It was a major breakthrough in advancing the scientific cause. Newton’s laws provided the foundation for what has become known as classical physics. For more than 300 years his equations have stood the test of time. In fact, Newton’s equations were all that was needed to plot the course that placed men on the moon. Although his equations provided an accurate mathematical framework (actually a very close approximation that was later revised by Einstein), Newton had no idea what mechanism was responsible for the effects of gravity. It is also believed that he regarded space, the arena of motion, to be absolute and unchangeable. He viewed time in much the same way.

It was not until the early 1900s when the mysteries of space and time, as well as the underlying causes of gravity, were addressed. Albert Einstein changed the course of history when he published his theories of special relativity (in 1905) and general relativity (in 1915). Einstein formulated that space and time are not absolutes, but have dynamic qualities associated with mass and motion. In fact, he described space and time as a unified whole, which later became known as space-time.

With special relativity, Einstein showed that measurements of time (and even distance) could differ for two observers, based on their relative motion. Time will elapse slower for someone in motion than it does for someone at rest. And the discrepancy in elapsed time will increase as the difference in the speed increases. In a sense, observers carry their own clock with them. This realization signifies another important point—that the observers would also disagree on what constitutes a given moment in time. One person’s now would be different from the other person’s now, yet both perspectives would be equally valid. Keep in mind, that it’s only when dealing with speeds approaching the speed of light or extreme distances that disagreements in time become significant. The effects of special relativity are not visibly apparent in the temperate conditions that exist here on earth; however, the earth is somewhat of an anomaly in comparison to the universe as a whole. With the universe, where extreme distances and speeds are commonplace, special relativity becomes important.

With general relativity, he showed that the effects of gravity are caused by the warping or curving of space (or space-time, but for simplicity I will use the term space). Heavy objects like planets and stars warp the fabric of space, thus creating the effects of gravity. It is similar to placing a heavy ball in the center of a trampoline. Any smaller balls placed on the surface will be drawn to the center, due to the surface being warped by the heavier ball. Bear in mind that a trampoline is a two dimensional representation of what is actually a three dimensional spatial fabric. It does, however, give us a clear visual analogy of how curved space participates in the motion of celestial bodies. In the case of planets and stars, orbits will develop when a stable balance is achieved. The earth can be thought of as moving in a straight line along a curved surface of space. Or as taking the path of least resistance along the distorted spatial fabric, which is created by the sun’s presence.

Another consequence of general relativity is that just as gravity curves space, it also curves time. But what does curved time mean? Similar to special relativity, where motion alters time, general relativity claims that gravity also alters time. When gravity exerts its influence time slows down. For instance, time passes a little slower on the surface of the earth than it does for objects high above the earth. A practical example of this effect is in the technology behind global positioning systems (GPS). The satellites that guide GPS devices have to account for both special and general relativity (general relativity producing the largest effect). The internal clocks of the satellites account for the fact that clocks on the earth’s surface run slower. If not for these adjustments, GPS devices would quickly become inaccurate; the coordinates on the ground would drift off by several kilometers each day.

Einstein’s relativity goes against our common sense perceptions, but apparently this is the reality of the universe. Einstein’s insights led to modern cosmology (the study of the origin and evolution of the universe), and our current view of the universe. Both classical physics (Newton’s view) and relativity (Einstein’s view) provide a deterministic framework. That is, if the present conditions are known, the past and future conditions can also be determined. That’s assuming that you have all the present data and the mathematical ability to do the calculations.

The next scientific breakthrough would be of a very different nature. In the mid-1930s a group of scientists were unlocking the secrets of the atom. In so doing, it led to the development of quantum mechanics. They found that the atomic and subatomic realms behave in ways that are very different from the world experienced at the larger scales. A whole new set of laws had to be developed to deal with the bizarre nature of the atom—laws that are partly governed by randomness and probabilities. Physicist Brian Greene describes the nature of quantum mechanics. He writes in The Fabric of the Cosmos:

 “…according to the quantum laws, even if you make the most perfect measurements possible of how things are today, the best you can ever hope to do is predict the probability that things will be one way or another at some chosen time in the future, or that things were one way or another at some chosen time in the past.”

The probabilities that are used in quantum mechanics are more fundamental than the probabilities that are assigned to everyday events. When we assign a probability to a game of dice or blackjack, it is based on our inability to calculate the precise conditions that will determine the outcome of the event—specifically, each roll of the dice or flip of the card. With quantum mechanics, however, even if we know all the present information possible, we still can not predict a future outcome with absolute certainty. Quantum physics describes a reality that is fundamentally uncertain, in which objects have no definite position, take no definite path, and even have no definite past or future.

Some experiments (known as the double-slit experiment and variations of it) have actually shown that a single particle, such as a light photon, can behave as if it simultaneously takes a number of different paths from a source to a target. It is debatable whether this really happens; nonetheless, outcomes are determined by the number of possible paths of the photon, whether or not they are all realized. The photon takes a definite position only when it is observed or measured (when it strikes the target). In between the source and the target, it can be thought of existing as a haze of possibilities.

This is partially explained by the idea that subatomic objects, like photons and electrons, exhibit both wave-like and particle-like properties. At times, a photon or electron can be described as occupying a wide region in space, and at other times described as occupying a single point in space. Depending on the variation of the double-slit experiment, a photon can sometimes behave like a wave and sometimes behave like a particle. Although it is not entirely clear how these results should be interpreted, physicists agree that our conventional sense of reality does not apply at the quantum level—even to a larger degree than Einstein’s relativity.

I know this all sounds absurd. Nevertheless, the predictions of quantum mechanics have produced results that are extraordinarily accurate. Quantum mechanical predictions are accurate in the sense that if a sufficient number of identical experiments are carried out, the totality of the outcomes will reflect the assigned probabilities. Yet each single experiment will generate a random and unpredictable outcome. Therefore, even with the most precise calculations possible, there is an unavoidable degree of uncertainty in quantum mechanics.

It has been said that nobody understands quantum mechanics, that even scientists that work with quantum mechanics don’t understand it. So if it’s not sinking in, don’t lose any sleep over it. In summing up: the renowned physicist Richard Feynman once wrote in The Strange Theory of Light and Matter “[Quantum mechanics] describes nature as absurd from the point of view of common sense. And it fully agrees with experiment.”

Once again our common sense is challenged by the laws of physics. From classical physics to the updating of relativity, and the weirdness of quantum mechanics, reality is proving to be difficult to grasp, as these theories give us very different views of reality. For this reason, there is a consensus among some physicists that there exists a deeper level of reality to the universe that remains undiscovered. They propose that there should be one theoretical framework that describes the universe, and not a fragmented view based on several partial theories. Einstein called this hypothetical theory a unified theory (also called the theory of everything). The quest for a unified theory became one of Einstein’s passions during his later years; however, it was not realized during his lifetime.

Today, physicists are still seeking the elusive unified theory. Our present understanding of the universe is based on the two major breakthroughs of the 20th century. 1) General relativity, which describes the large scale structures of the universe, like stars and galaxies. 2) Quantum mechanics, which describes the small scale structures, like molecules and atoms. These two theories have been very successful in their own right, but in some extreme situations they cannot be applied successfully. In some situations where large densities are compressed into a tiny region of space, an understanding of both the large and the small is required. But when general relativity is applied together with quantum mechanics, the theories fall apart. This becomes a major obstacle when trying to understand conditions such as the center of black holes and the origin of the universe where these conditions need to be considered. The big bang theory describes the events a fraction of a second after the beginning, but says nothing about the beginning or before. Without a unified theory, or a new theory altogether that can deal with this situation the cause for the origin of the universe will remain a mystery.

As we have seen, each new discovery has added a piece to the puzzle and our understanding of the universe has increased dramatically over the years. The ultimate goal of science can be nothing other than a complete understanding of the laws of nature, though it may be that mystery will forever be a part of the picture. In his 1988 book, A Brief History of Time, Stephen Hawking weighs in on the subject:

“But can there really be such a unified theory? Or are we perhaps just chasing a mirage?

There seems to be three possibilities:

1) There really is a complete unified theory, which we will someday discover if we are smart enough.

2) There is no ultimate theory of the universe, just an infinite sequence of theories that describe the universe more and more accurately.

3) There is no theory of the universe; events cannot be predicted beyond a certain extent but occur in a random and arbitrary manner.”

There may very well be limits to what humans are able to understand, but this should not limit our quest for knowledge. Where would we be today if some people hadn’t questioned conventional thinking and opened the door to greater discovery? It is due to the few who dared to challenge the beliefs of their time that many benefited. Not only in science, but in other domains as well, it is the quest for knowledge that paves the way for progress. This is the case for our lives, as well as humanity as a whole. No one knows how far we can go, and only time will tell. On this note, we can at least rest assured that the modern age of science has brought humanity out of the darkness of ignorance, and into the light of knowledge.

References: Brian R. Greene, The Fabric of the Cosmos (New York: Alfred A. Knopf, 2004), 10-11.

Richard Feynman, QED: The Strange Theory of Light and Matter (Princeton: Princeton University Press, 1988).

Stephen W. Hawking, A Brief History of Time (New York: Bantam Books, 1988), 165-166.


 

Addressing the Big Questions

There are some fundamental questions that humans have been grappling with since we have developed the ability to reason. These questions deal with the nature of our existence. For instance: Where do we come from? Why are we here? Does the universe have a creator? What is our place in the universe? Is there life after death? What is the nature of reality?

These and other related questions have often been called the big questions. And they have been addressed in various ways, from the dawn of civilization, throughout the ages to modern times. Religions, myths, rituals, celebrations, and even architecture have been built as a response to these questions. Some fields of science have also responded to the big questions. In order to form a view of reality, one will usually have to contemplate some of these questions. Therefore, our answers to these questions play a major role in determining how we see the world.

Although many people may not be consciously aware of their picture of reality, at least not on a daily basis, I believe that the majority of people have some form of picture in the back of their minds. We accept things as facts without regularly thinking about it. For example, we know that gravity keeps us from flying off the earth, and an object thrown in the air will fall down. We know it to the extent that we don’t even think about it. This is a simple example; however, I believe we respond in similar ways on the more complex questions. At different points in our lives we arrive at conclusions to some of these questions, and consequently, it forms our view of reality.

Our view is usually composed of things we know as facts, things we believe by faith, and things we accept as unknown or unknowable. The degree to which each aspect is present varies with the individual. This view of reality is determined over a long period of time, and in segments, eventually creating a whole. It is internalized and we go on with our lives. Some seldom question their view, while others are aware that their view is subject to change. If we were to question and examine our view of reality, would it stand up to reason? Would it form a cohesive whole? Would one part contradict another? Would we have properly separated the knowable from the unknowable? And how would faith factor into the equation?

There are many factors that contribute to establishing our picture. We are influenced by family, friends, society, religion, and life experiences. Genetics also likely plays a role. However, it ultimately comes down to how we interpret the world that we observe and experience. In our modern world we can draw a great deal of insight from science. It is an advantage that no other civilization in history would have had, at least not to the extent we have today.

In ancient times, people were limited to the observable world, lacking the knowledge of modern science. They would have observed the world around them, and drawn conclusions based on their observations. They were actually using a simplified form of the scientific method; however, it was significantly more primitive. The ancients must have intuitively understood the world in which they were living. Although they would not have been able to calculate precisely how things worked, they must have known what they needed to survive. Their understanding of the world would have been deeply rooted in nature. They would have felt a deep connection with their environment. The soil and the plants, the rivers and the oceans, and the sun and the stars may well have been recognized and celebrated as their life source.

The ancient civilizations were in tune with the natural cycles, and much of their lives were governed by these cycles. Archaeologists have found clear evidence at a number of sites that support this claim. For instance, Stonehenge and the Pyramids at Giza (which includes the Great Sphinx) are precisely positioned in accordance with solar alignments at specific times of the year. We could question the ancient interpretation of the natural world without science to guide them, but their devotion to nature was evident.

In our modern industrialized world, many people have lost this profound relationship with nature—an unintended consequence of modernization. The daily life of many individuals in the developed world has little direct contact with nature. The population is densely congregated to large cities, where one finds predominantly concrete streets and buildings, instead of green pastures, forests and wildlife. Even for those that live in rural areas, lifestyles are somewhat similar. We travel mostly in vehicles, and move from building to building. We purchase our food at grocery stores, and purchase other material items at department stores. As far as where the goods come from, we don’t have to give it a second thought. Although industrialization and technology have eased many of life’s burdens, improved quality of life and increased longevity, it has come with a cost. The obvious environmental costs are evident, but the more subtle effects of the disconnection that humans have with nature are just as profound.

In order to properly understand and internalize reality, we need to incorporate nature, and find a balance between experience and knowledge. Both the methods of modern science and the ancients are available for us today. The fields of science give us a factual or logical understanding of reality, but the meaning would be diminished without the experience. In some situations, the information from our sensory perceptions aligns directly with empirical scientific knowledge. The example of gravity, which I provided earlier, demonstrates this point. One can understand the laws of gravity, and also experience its effects in a personal way, such as observing the trajectory of a ball that is thrown in the air.

In other situations, where the facts contradict our direct experience, it becomes a little more problematic. The experience of day and night is a prime example of this. It appears to us that the earth is stationary, and that the sun is moving from the eastern to the western horizon, however, the scientific explanation is very different. Science explains that the earth rotates once in twenty-four hours, thus causing day and night; the sun doesn’t move across the sky. Nevertheless, when it is explained to us from a scientific perspective, we can easily make sense of the experience. We can integrate both a logical and intuitive understanding of the reality of day and night. Similarly, many other natural rhythms can be interpreted by experience, or explained by scientific reasoning.

It becomes a little more difficult when we are dealing with phenomena that lie mostly beyond the scope of our senses, such as the very large structures of the universe or the microscopic realm. We are then left to choose between science and our sensory perceptions. But if we choose to trust the science, we can somewhat imagine what the experience would be like.

Science is addressing the big questions, though somewhat indirectly, in ways that previous generations could not have imagined. In the last century, scientific discoveries have completely changed the picture of the cosmos. Human sense of place in the universe is being reevaluated. The big questions can no longer be dealt with solely by ancient methods. Although it is vital that we retain some of the ancient wisdoms, science can lead the modern search for truth. The universe, which was once thought to be beyond human understanding, is being revealed by modern science. Albert Einstein clearly realized this. He is quoted by Stephen Hawking and Leonard Mlodinow in The Grand Design: “The most incomprehensible thing about the universe is that it is comprehensible.”

Although there are few absolute proofs, or unquestionable truths regarding the big questions, the universe has left many clues that point to its nature. As a human race we are getting closer to understanding the nature of our existence. We have the opportunity to create a picture of reality that is in line with the natural world, and ultimately the universe. I believe that collectively and individually it is one of our most important challenges. Since our view of reality forms the foundation for our lives, the challenge is well worth taking. On this note, I have to agree with the Greek philosopher Socrates when he said, “The unexamined life is not worth living.”

References: Stephen W. Hawking and Leonard Mlodinow, The Grand Design (New York: Bantam Books, 2010), 87.


 

Horizons Out of Reach

Imagine you are walking on a terrain of rolling hills; in the distance you can see the horizon. Beyond that point you don’t know what you’ll find. When you arrive at the crest of a hill a whole new landscape appears with its own horizon. This is a common metaphor used to show how knowledge is usually acquired. Each horizon reached often presents another horizon (or question) in the distance.

The story of science is one of impressive discoveries. Many horizons have been reached, but many more are yet to be encountered. No one knows how far we can go and what we will find. I hesitate to limit what might be possible, because science has surprised us time and time again. If the human race survives long enough, is there anything we can’t find out? I would think that there are some questions we will not be able to answer, but which ones? One should think long and hard before ruling anything out, which I have done. For what it’s worth, I am left with two questions which appear out of reach. I’ll get back to this later but first a little context.

Horizons Reached

At present the knowledge base is immense, but it had to be acquired. Imagine going back 100, 500 or 1,000 years and contemplating the future. It’s possible that some future discoveries could have been predicted. However, there are other findings that few saw coming. It is practically impossible to provide a full account of impressive scientific discoveries. However, there are some that immediately stand out. What follows has been mentioned in prior blogs of mine; think of it as a short list of scientific highlights:

  1. The Idea of Natural laws: At around 500 BC the ancient Greeks documented the concept of natural laws. They suggested that patterns in nature could be recognized and attributed to natural laws. This was a major breakthrough in scientific thought.
  2. The Copernican Revolution: In 1543 Nicolaus Copernicus published his theory of the heliocentric model of the universe. He removed the Earth from the center of the known universe and replaced it with the Sun. This was a significant reality check, which would influence human philosophy for years to come.
  3.   Newton’s Laws: In 1687 Isaac Newton disclosed his law of universal gravitation and his three laws of motion. Newton laid the foundation for what later became known as classical physics. Now over 300 years later, Newton’s equations still apply (except for extreme circumstances).
  4. Einstein’s Relativity: With special relativity (in 1905) and general relativity (in 1915), Albert Einstein filed in the gaps in Newton’s laws. Einstein accounted for those extreme circumstances. His contribution led to a greater understanding of the large-scale universe.
  5. Darwin’s Theory of Evolution: Charles Darwin provided an explanation for how all life evolves with his famous publication in 1859. This one basically speaks for itself; few if any discovery is more impressive.
  6. Revealing the Atomic and Subatomic Realm: Beginning in the early 1900s, several people worked on theories such as quantum mechanics and the standard model of partial physics. A realm previously inaccessible was shown to be real and would unwittingly have a significant impact on human affairs.
  7. The Big Bang: In the 1931 George Lemaitre suggested that the universe began in a single geometric point. He arrived at this by applying general relativity to the observations of William Hubble. Lemaitre`s idea would eventually provide us with a truly universal origin story. 
  8. DNA: In 1962 James Watson, Francis Crick and Maurice Wilkins won a Nobel Prize in medicine for the discovery of the structure of DNA. This opened up a whole new science, which will undoubtedly impact us for generations.

Of course the list above could be significantly longer and still fall short. However, I present it just to give you a feel for how knowledge, particularly scientific knowledge, alters our perception of the world. It is debatable how many past discoveries could have been foreseen; nonetheless one can imagine some horizons in the distance which may be attainable. For example: figuring out how life on Earth got started, or the discovery of life elsewhere in the universe. Closer to home, perhaps finding a cure for cancer (or most cancers), and maybe even weather forecasting weeks or months in advance. No one knows for sure which findings are coming, but I feel fairly certain that at least two questions will remain unanswered.

Contemplating the Unanswerable

The two questions I am referring to are as follows: 1) Why is there a universe in the first place?  2) Why is the universe the way it is and not some other way? Another question which I feel I must address before moving on to question 1, is this: Why is there something rather than nothing? You’ve probably heard this one before, and it is similar to question 1. However, I find this to be a peculiar question and here’s why. First let’s define what is meant by nothing. If by nothing, one assumes the absence of everything, then nothing is a non-entity. In other words, how can nothing be a reality if by definition nothing has no existence. The question gives us two options, something or nothing and it seems to me that something is real and nothing is not. By this logic one could conclude that there has to be something, but why a universe?

For some, the existence of the universe doesn’t seem to be a big problem to solve. The standard answer is that God created the universe and that’s it. However, I can’t help but ask two simple follow-up questions: a) Why is there a God in the first place? b) Why is God the way he (she, it) is and not some other way? Do you see how this works, by inserting God as the explanation for the universe we’ve circled back to where we started. In essence the questions are identical. We have merely moved the starting point from the universe to God.

Another approach is to examine the possibility of a multiverse. There are scientific reasons that suggest that other universes may exist, but that is as far as it goes.  Although the multiverse is theoretical, it may shed light on question 2. Why is the universe the way it is and not some other way? If multiple universes actually exist, it could be that all possible universes exist, therefore it is not surprising that at least one universe is like ours. Although the multiverse idea is somewhat satisfying on the surface, it has its problems. For starters, it does not address question 1. Why is there a universe in the first place? It says nothing on why there would be a multiverse in the first place.

There is also the problem of testing the multiverse idea scientifically. How can we ever verify something outside the boundaries of our vast universe? Hypothetically, even if our science advanced to a point where universes outside our own could be detected, how could we know the full-scale of a multiverse? We would likely be unable to determine how many universes exist in total. Ultimately that’s where I think the multiverse idea falls short in terms of answering question 2. Why is the universe the way it is and not some other way? If we can’t know how many universes exist in total, we can’t explain why our universe is the way it is and not some other way. All possible universes have to exist in order for the multiverse to the job. Or at the very least, it would take an extremely high number of universes.

Why is there a universe in the first place and why is the universe the way it is and not some other way? I have thought about these two questions philosophically, religiously and scientifically and have made little progress. Each approach gains momentum only to fall short. There are undoubtedly still many horizons within our reach and it will be interesting to see what lies ahead. That being said, I have to conclude that there are at least two horizons that seem to be hopelessly out of reach.

References:http://www.bbc.co.uk/schools/gcsebitesize/science/add_edexcel/cells/dnarev3.shtml

https://www.quora.com/What-is-the-relationship-between-the-Standard-model-and-Quantum-field-theory


 

Electromagnetism and the Modern Age

If one had to rate the greatest discoveries of all time, electricity would rank high on any list. Most of the modern world is powered by electricity. What would our lives be like without electricity? Just think of your own home; when the power goes out everything gets put on hold. Take people’s smart phones away and they don’t know what to do with themselves.

The application of electricity was the result of 3 centuries of investigation and experiments into the nature of electricity and magnetism. Understanding the relationship between the two forces and unifying them into a single force, called electromagnetism, proved to be a critical step. The unification of electricity and magnetism also established the existence of electromagnetic waves, the fundamental principle behind wireless technology.

Fascination and Curiosity

In the 1700s static electricity was a well-known phenomenon, and various devices were made to produce it. Electricity was poorly understood at first. Its main use was as an entertainment tool as it could create colorful sparks and move small objects. It was used in types of magic shows that were meant to delight crowds.

Over time the curious nature of electricity demanded an explanation, and a number of experimenters tried to find out. Where did electricity come from? Static electricity was observed to pass through people. Some animals were known to produce electric shocks. Therefore, was electricity intrinsic to life itself or were the living bodies a medium for carrying a fundamental force of nature?

In 1799, Alessandro Volta, an Italian physicist and chemist showed that electricity could be generated artificially. He created the first battery by piling up metal plates, separated by cards dipped in dilute acid, and attaching both ends to wires. Metals have a unique quality where at the atomic level the electrons in the outer shells can be shared. Under the right conditions the electrons can flow from one atom to another. This produces an electric current.

The unit for measuring electric potential is named in Volta’s honor (the volt). Up until Volta’s pile, as it was called, electricity could only last for an instant. Now it could be stored in a battery, which opened the door for electricity to do useful work. But the road to inventing electrical technologies would be long and winding; the knowledge of electricity was still in its infancy.

The Insights of Faraday and Maxwell

Michael Faraday was a self-educated scientist, who is famous for his experiments with electricity and magnetism. His work would lead to unlocking the secrets of the two mysterious forces. Faraday picked up the work of Danish physicist, Hans Christian Orsted. In 1820, Orsted accidentally discovered that a current carrying wire caused a nearby magnetic needle to move. In other words, an electric field created a magnetic field.

Knowing that an electric current had an effect on magnets at a close distance; Faraday wondered if the experiment could be reversed. Could magnets generate electricity? Faraday set out to explore the relationship further, and in 1831 he discovered that a changing magnetic field caused an electric current in a nearby wire. The key insight was that electricity was produced when the magnetic field changed as it interacted with the wire. A stationary magnetic field and a wire did not induce a current. Therefore, a third variable was needed – motion. The motion of a magnetic field in relation to a wire generated the electricity.

This principle, known as electromagnetic induction, is responsible for powering all electric motors and generators. Electric power is generated by a changing magnetic field and its interaction with a coil of wire. The coil multiplies the amount of power generated, but operates under the same principle as Faraday’s experiment with a single wire.

Three decades later a Scottish physicist by the name of James Clerk Maxwell put the finishing touch on the unification of electricity and magnetism. By the time Maxwell came along it was well-established that there existed a connection between the two forces. The telegraph had been invented, the first long-distance communication device, which operated on the principle of electromagnetism. Maxwell’s great achievement came in 1862; he devised 4 simple equations that represented all the interactions between electricity and magnetism.

The original concept of two distinct forces was united under one theoretical framework. Electromagnetism became known as one of the 4 fundamental forces of nature recognized by modern physics; the other 3 being, the strong nuclear force, weak nuclear force and gravity. In short, Faraday unified electricity and magnetism experimentally, and Maxwell unified them mathematically.

Fields, Waves and Light

With Maxwell’s equations came a new understanding of electromagnetism. Not only were the two forces unified, but the concepts of fields and waves would become extremely important. Modern physics would be transformed by the knowledge that energies could occupy regions of space and have noticeable effects. In This Explains Everything, physicist Lawrence Krauss writes:

“[Maxwell’s equations] established the physical reality of what was otherwise a figment of Faraday’s imagination: a field – that is, some quantity associated with every point in space and time.”

Maxwell realized that if a changing electric field created a magnetic field, and a changing magnetic field created an electric field, then the process would be continuous (a kind of chain reaction). The mutual interaction of electricity and magnetism would cause the field to oscillate. When an electromagnetic field oscillates it generates an electromagnetic wave, which has an independent existence and moves out from the source. Maxwell was able to calculate the speed at which electromagnetic waves propagate. It tuned out it was precisely the speed of light. Krauss writes about Maxwell’s conclusion:

“Thus he discovered that light is indeed a wave – but a wave of electric and magnetic fields that moves through space at a precise speed…”

Maxwell’s discovery of a constant speed of light was the starting point for Einstein’s revision of space and time – the theory of special relativity. A decade later Einstein formulated the theory of general relativity. It was then followed by quantum theory, and the age of modern physics was in full swing.

A World Beyond Imagination

The scientists and inventors of the 1700s and 1800s could not have imagined the modern world that resulted from their work. Electricity and information technology could not have been possible if not for a complete understanding of electromagnetism. It was the start of something big, and step by step new discoveries and inventions pushed the boundaries of progress. Many innovators took part in the quest. Our world has become brighter, smaller and faster.

I know I am dating myself; however, I grew up watching a black and white television. At first the TV only aired 2 channels, of which the signal was received by an antenna in the attic. There was no remote control back then, so we had to manually turn the dial to change the channel. In addition, someone had to walk up to the attic and turn the antenna around. Eventually, we upgraded by adding a second antenna (each pointing in a different direction) and running wires to a switch besides the TV. I guess that was progress back then. Nowadays people complain if the Wi-Fi is slow.

I am amazed at all the electronic gadgets we have today, and all they can do. They work on principles that take advantage of things we can’t even see. How can electrons moving through wires light our homes and power computers? How can waves traveling through space carry information that can be converted to video and audio? Plus, most of the time, the signal is perfectly clear. When I consider that it took 3 centuries of inventions to get to this point, I am not going to get upset over a slow WiFi; I am just grateful it works at all.

 

References: Edge Foundation Inc., This Explains Everything (New York: HarperCollins Publishers, 2013), 335, 336.

In Our Time: Science, Michael Faraday, Dec. 24, 2015.

In Our Time: Science, The Invention of Radio, July 3, 2013.

In Our Time: Science, Maxwell, Oct 1, 2003

Shock and Awe: The Story of Electricity — Jim Al-Khalili BBC Horizon, Published on May 26, 2015.


Why Religion?

Why is religion so pervasive in human societies? Organized religion has been with us since the dawn of civilization. In fact, religion is so common that few societies have existed without it. As far as ideas surviving in human brains (memes) religions are among the most successful. That’s right religions are memes, but they are usually referred to as traditions. They stay in existence because they are ideas that are passed on from person to person and on to the next generation.

In The beginning

How and why did religion begin? For something like religion to arise it requires a highly evolved being. One would assume it requires a large enough brain to formulate abstract ideas and ask complex questions. That pretty much rules out every other species except humans. It is my contention that as soon as a being is able to pose a question it can’t answer, the raw materials for a religion are present. Although, it does not necessarily mean religion had to come about. The fact that it did is indeed complex. However, I will try to break it down by proposing a lengthy list of possibilities.

  • Fear and Uncertainty – Without a workable understanding of the natural world, imagine what kind of questions our distant ancestors   must have had. Why are we subjected to thunder and lightning? What is behind the force of a hurricane? Why does the Sun set in the horizon? There is perhaps no greater fear than the unknown and the ancients were pretty much left in the dark by their lot in history. Natural occurrences that are now clearly understood were often (and perhaps logically) attributed to the will of gods by our ancestors.
  • Agriculture – At around 9000 BC the rise of agriculture made it possible for civilizations to develop. As humans went from living in small groups of hunter gathers to farming villages, it may have set the stage for organized religion. Farming made humans increasingly vulnerable to the whims of nature. The idea of praying to gods for blessings in a ritualistic setting (such as a good harvest) may well have originated with agriculture. In addition, with large groups of people living in close proximity, it may have been wise to have everyone on the same page.
  • Solidarity – We are social beings at heart and there is something to be said for unity. Unlike today in the developed world, in ancient times survival was at the forefront. It likely would have been a survival advantage for a society to share common goals and ideas. A fractured community would have been at a disadvantage in fighting off enemies and acquiring resources. Religion may have been vital for strengthening social bonds and getting people to work for a common cause.
  • Order and Ritual – Life was then and is now a mix of unforeseeable and anticipated events; both can create anxiety and worry. For many people, the belief in something behind the ebb and flow of life provides order for their lives. This sense of order, even though life does not necessarily reflect it, is often reinforced in people’s mind through religious traditions and rituals.  
  • Perseverance – If you think life is hard now (and it is at times) imagine what it must have been like thousands of years ago. Without modern conveniences, the ancients had to work much harder for sustenance. They had no theory of disease, limited medical care and a shorter life expectancy. With a difficult life and the awareness of eventual death, would humans have been able to persevere without religion? Religion may have been a survival advantage, not directly but perhaps indirectly over the long haul.
  • Hope for an Afterlife – The awareness of death is a by-product of a highly evolved brain. We are aware that we will lose everyone we love, unless death overtakes us first; this is a sobering realization. Central to most religions, is the prospect for an afterlife. This idea alone helps religions remain viable for long periods of time. It is very hard to come to terms with the idea that someday we will no longer be. 
  • Agency – We go through everyday life with desires and intentions. We are also aware that other living beings possess them as well. If every animated being we are in contact with (human or non-human) has intentions, we could say they are intentional agents. Nature is also animated, with wind, rain, rivers, vegetation, celestial bodies and much more. In a pre-modern world, was it such a stretch to extend the principle of agency to nature? Even today nature is still personified as Mother Nature. And if animals and nature were thought to have intentions, it was just one more step to attribute agency to gods.
  •   Power and Control- Small groups of people have a way of regulating themselves. If someone is taking advantage of others they can usually be dealt with. However, when small groups grow to become villages, cities and empires, things change. An ugly side of religion is that it has been used (or misused) for controlling people. This is how it works in a nut shell: When populations become too large for self-control, we end up with government and laws. If we break the laws then we are punished. But it is impossible for any regime to police everyone. Religion steps in as an all-encompassing secondary force. If you think you got away with something, then there is an eye in the sky that sees all and in the end you will be held accountable. This is a very powerful force and difficult to eliminate.
  •  Morality- Some people tend to view religion as the de facto origin of morality. However, it is hard to imagine how humans could have evolved to the point of organized religion, without first adherence to social norms. As a matter of fact, other primates exhibit social norms as well. Religions have been successful at converting established social norms into moral codes. As a consequence, religions have mostly presented themselves as moral authorities. The moral dimension of religion, in part accounts for their staying power.
  •   Explanation- Many of the existential questions, which puzzled humankind for centuries, have in large part been address by the scientific enterprise. At present we have access to a beautifully   coherent explanation for how the universe works and how we got here. However, all this knowledge came to us much like a dripping faucet. As information was being collected the business of living was at the forefront. For generations religions provided an explanation in the form of origin stories which could be shared with the masses.
  • Meaning- Humans are meaning making beings; we tend to look for meaning in life situations. I suspect that the ancients did not differ in that regard. The religious stories have and still provide meaning for large sections of the population. Today things have changed a bit, in the sense that we now have the scientific story to factor in, as opposed to the largely unchallenged voice of religion. That said, I must admit that the meaning value of the scientific story is incomplete.

Going Forward

One would think that our religions provided some survival advantages along the path of human development, how else can we explain their universality. To be clear, they are ubiquitous in their presence although not necessarily in their message. Some of what I touched upon earlier could very well fall under evolutionary gains, such as solidarity, perseverance, order, and perhaps even meaning. It appears that religions have contributed to civilization in a significant way, but will they continue to do so going forward? Or will something else step in to take its place?

Religion may have been our first attempt at understanding the world and ourselves. One might even say that religion was our first attempt at philosophy, morality, and perhaps science. However, much has changed in the world since religion was in its infancy. For the most part they don’t have the same hold on people as they once did, also we can now look at religion with a wider perspective. We tend to think of religions as being ever-present but they do have life spans. We are all aware of ancient religions and gods that are no longer taken seriously. However, normally religions easily out live their followers.

With the advantage of a lengthy history behind us it is easy to see that religions are universal in their presence but regional and cultural in their message. A look at the demographics for the various world religions points this out; numbers very slightly from different sources but not enough to matter for my purpose here. Also, I have rounded off the numbers for simplicity. This is how they rank globally in percentage of followers:    

  • Christianity 30 %
  • Islam 20 %
  • unaffiliated 16%
  • Hinduism 15%
  • Buddhism 7%
  • others 12%

These figures indicate that in a best case scenario (if you’re a Christian) 70 % of all the people in the world will disagree with you on this matter. And let’s not forget that there is much disagreement amongst numerous Christian denominations. If one falls in any of the other five categories, the disagreement is even greater. Hypothetically, from a visiting alien’s point of view, any given religion would be indistinguishable from the others. In other words, with no cultural bias, it would be difficult to favor one religion over any other.

I suspect that in ancient times, it was far easier to buy into the religion of the day, but perhaps the golden age of religion has past. Not that today’s religions don’t have influence in many pockets of the world; they just aren’t as universal in their appeal. We are not as isolated geographical and far more aware of numerous past dead religions and a variety of current active ones. The religious stories continually change over time and across cultures. Religions stay alive for varying lengths of time in a sort of natural selection of ideas. It may be comforting for believers to think that today’s religions are here to stay, but if history is any indication, the future of religion is not set in stone.

 

References: Dr Michael Shermer | God does NOT exist, OxfordUnion, Published on Dec 21, 2012. https://www.youtube.com/watch?v=0pOI2YvVuuE

Religion – when, why and how did it begin? http://www.garvandwane.com/religion/religion1.html

World Religions – populations pie chart statistics list. http://www.age-of-the-sage.org/mysticism/world_religions_populations.html


 

The Physics of Time?

Our conception of time as moving in one direction, from past to present to future, is so commonplace that we accept it as fact. But what if our experience of time is misleading us, and perhaps hiding the true reality of the universe? Can we rely on our senses to accurately perceive something as abstract as time? Is time real, or just an illusion caused by other physical effects? Can science provide any clues into understanding time?

It was once thought that time existed as absolute and unchanging, flowing at a constant rate and moving in one direction. This was true for scientists and the public alike. Isaac Newton considered time in much the same way as space; time and space providing the arena in which the universe unfolds. Newton’s famous laws of gravity and motion assumed absolute space and time. His laws work extremely well for our corner of the universe, that which is accessible to human senses. They are still used today to calculate the gravitational forces of the sun, moon and planets, as well as the motion of spacecrafts and objects close to earth.

There is a catch, however; Newton’s laws are not 100% accurate. Absolute space and time is not an acceptable assumption when dealing with extreme scales of the universe, a reality that was hidden from Newton in his time. The modern laws of physics question our everyday concept of time. In the early 1900s, Einstein devised the theories of special relativity and general relativity, and the idea that space and time could be flexible was born.

Einstein’s Revision of Newtonian Time

More than 300 years ago Isaac Newton wrote that, “He did not need to define time because it is something well known to all.” For obvious reasons our common sense perception of time has been called Newtonian time. The concept of absolute time had gone unchallenged until Einstein came along.

With Einstein’s revision of Newton’s ideas we have to envision a universe where each celestial body and each observer (what concerns us) carries their own clock with them. With relativity, the passage of time is relative to influences of mass and motion. In short, massive objects like stars and planets cause space and time to warp, resulting in gravitational effects and slowing down time. Also, time elapses slower for an object in motion than for an object at rest; the discrepancy in the passage of time gets proportionally larger as the speed increases. Even though it can be said that time runs at different rates (or two observers disagree on the passage of time), each perspective is equally valid. When one observer moves relative to another observer, clocks will not agree.

Flexible time is a property that applies everywhere in universe, however, the effects are minuscule in everyday life. Although the effects of relativity are not visibly apparent to us, observations have confirmed that this is how the universe really works. The scientific evidence is conclusive; time is relative, not absolute. Just as one can move through space, one can also move through time. No longer could space and time be considered as two separate entities; a new term called spacetime was brought into use to better account for the relationship between the two.

A hypothetical situation of an alien in a distant galaxy shows how bizarre relative time can be. If you are stationary here on earth and the alien moves away from you, the alien’s now coincides with a moment in your past. If the alien turns around and moves towards you, then the alien’s now coincides with a moment in your future. Just as extremes in speed and gravity alter the passage of time, extreme distance has a similar effect on what constitutes a given moment of time for two observers. This is the kind of universe that Einstein described.

I cannot think of a better everyday example of flexible time than GPS devices. The clocks in the satellites in orbit need to account for the fact that clocks on the Earth run a little bit slower. This is due to the combined effects of the motion of the satellites and the gravity on earth (the Earth’s gravity having the largest effect). If not for the application of relativity, GPS devices would quickly become inaccurate.

The Laws of Physics, Entropy and The Arrow of Time

Whether we examine small physical systems or the universe as a whole, there is no arrow of time found in the laws of physics. For example, if a scientist knows all the current conditions, he can determine precisely what happened in the past or predict a future outcome. This can be achieved by applying the same laws either backward or forward in time.

Is there anything in science that indicates an arrow of time? There is a concept in physics called entropy, which may give us an arrow of time. Simply stated, entropy is the measure of disorder, and the implication of entropy is that physical systems move towards a direction of increasing disorder. The reason being, that there are many ways in which disorder can come about. Conversely, there are few ways that order can be achieved.

Let’s take the example of the pages of a book (all numbered in order). If we were to randomly mix up the pages (and re-stack them) the chances are extremely high that the pages will end up disordered. In only one configuration will the pages be ordered, while many arrangements will be disordered. In almost all cases it takes a special effort to create order and no effort at all to create disorder.

The puzzle is: how has the universe created stars, galaxies, planets and life on earth? If entropy rules, you would think that the universe would be in chaos forever. To get an answer we may have to go back to the birth of the universe. The Big Bang is believed to have been a highly ordered event (perhaps the most ordered state of the universe). From that point on the universe has evolved into greater disorder. Entropy may give us an arrow of time. From the point of most order (in the past) towards increasing disorder (in the future).

This should make us pause and consider our present conditions on earth. Conditions favorable for life are extremely difficult to come by, and entropy is bound to rule in the end. In the grand scales of the universe, in both time and space, life is a newcomer and rare (as far as we know). Life on earth is destined to be extinguished, at least at some time in the far future.

Our experience shows us that many things only happen in one direction, and usually in the direction of more disorder. For example: A glass can fall to the ground and break, but a glass can’t reassemble by itself. A drop of ink can mix in water, but the ink can’t come back together into a drop. An egg can be broken, but can’t reassemble back into the shell. This is entropy at work, and possibly the scientific reason behind our common-sense experience of an arrow of time.

The River of Time

Clearly, there is a sense that time moves from past to present to future, like a river, which flows in one direction from one moment to another. From the present perspective the past is gone forever and the future is yet to be realized. However, for physicists it is not as clear cut. From Einstein’s perspective, what constitutes a given moment of time is dependent on the observer. Because time is relative to each observer, my now could coincide with a past or future experience of someone else in a far-away galaxy. There is no sense that the whole universe progresses at the same rate. There is no now that everyone can agree on.

How could this be? As long as there are discrepancies in time for different locations and observers, there can be no universal now for all. Equally, there can be no past or future moment that all can agree on. If this is true the implications are unsettling: All moments of the universe exist. From a physicist point of view Brian Greene concludes in The Fabric of the Cosmos:

” … if you agree that your now is no more valid than the now of someone located far away in space who can move freely, then reality encompasses all of the events in spacetime… Just as we envision all of space as really being out there, as really existing, we should also envision all of time as really being out there, as really existing, too.”

Einstein also saw the paradox between physics and experience: “For we convinced physicists, the distinction between past, present, and future is only an illusion, however persistent.”

Does time really flow like a river? Even from a common sense perspective the distinction of past, present and future is relative to the individual. For me, someone who lived many years ago existed in the past. Someone that will live 100 years from now will exist in the future. That’s all from my perceptive or from my point of reference. From the perspective of a historical figure, like Einstein, he lives in the present and I will exist only in the future. With each moment there is no essential difference, no temporal absolute, just the relative perspective of each individual.

Change as The Scorekeeper of  Time

If I haven’t created enough doubt as to your assumed notion of time, I will conclude with one more observation. This has to do with change. Is it possible that the only real aspect of time is change? At least could change be the only way that time is perceived?

We notice time has elapsed because something has changed. It is reinforced by our mind. Our memories tell us that an event was in the past, and our imagination projects that something could happen in the future. In essence, we experience the passage of time or that time flows because of continual change. If there were no change at all, would time even exist? Imagine a universe with every object being still or no objects at all. Every moment would be identical.

A reality with no change is not our experience, nor is it how the universe presently works. However, a particular question about the Big Bang Theory may shed some light: That is, what happened before the bang? Science can’t take us back any further, as the Big Bang represents a theoretical barrier. Perhaps we don’t need to look further. Physicists believe that time and space as we know it were created at the Big Bang. This may be highly speculative, yet it could be that there was no change before the Big Bang; or conditions were so chaotic that there would have been no discernible events. Thus, that would mean that nothing really happened before.

At the other end of the spectrum, one current model of the universe predicts that space will continue to expand at an increasing rate. This expansion will drag every galaxy farther apart with no end in sight. Far, far into the future everything in the universe will become diluted. In the end, if we can call it that, everything will decay, leaving only random particles drifting in space. The universe will be cold, dark and practically empty. We could even conclude there will be no change and time will also come to an end.

Coming up with an explanation for time is challenging. You could even make a case that time does not exist. What we experience as time may be something else altogether. With each perspective of time I have mentioned there is something intriguing, and still something seems to be missing. How could something as familiar as time be explained differently, with each explanation having some merit? That’s how it appears to me.

Newtonian time aligns very well with our daily experience of time. Einstein’s relativity is in agreement with modern observations of the universe. Entropy gives us an arrow of time not found in the laws of physics. The river of time points to everyone’s unique frame of reference. And finally, change gives us a physical component that marks the passage of time.

 

References: Brian R. Greene, The Fabric of the Cosmos (New York: Alfred A. Knopf, 2004), 139.

The Fabric of the Cosmos: The Illusion of Time, Life Sciences, Published on Apr 12, 2016. https://www.youtube.com/watch?v=pPA83Ap0Xsg.


 

Sequencing the Human Genome

On June 26, 2000, U.S. President Bill Clinton, geneticists Francis Collins and Craig Venter, announced the completion of the “first survey” of the entire human genome. The announcement was made in front of a large audience at the White House, which signified the importance of the milestone. Actually, the sequencing of the human genome was not yet complete; the presentation had been arranged as a compromise between two competing parties. On one side, the government-funded Human Genome Project, and on the other side a private company, Celera Genomics.

Collins was the head of the Human Genome Project, Venter represented Celera Genomics. The truce had been arranged to end a race for a complete sequence of the human genome. Over a number of years both groups had made considerable progress and where getting close to the finish line. The joint statement would ensure that both sides would get credit upon completion; all the letters of human DNA would soon be spelled out. Francis Collins ended his talk with the following statement: “I am happy that today, the only race that we are talking about is the human race.”

The Controversy

The Human Genome Project was launched in 1990. The task at hand was enormous. The human DNA code consisted of over 3 billion letters. It was estimated that it would take 50,000 person years of labor, at a cost of $3 billion. Collins compared the project’s scale to going to the moon or splitting the atom. As it turned out, two competing groups would go after the genome. They would differ in both technique and purpose.

Craig Venter

Celera Genomics was using a method of sequencing called shotgun. Criag Venter believed he could speed up the process by ignoring large parts of the genome located between genes. These sections encode for regulating genes, such as on and off switches, and some parts have no known function. Venter would essentially break up the genome, sequence the genes and then try to put the pieces back together.

Perhaps another motivation for the shotgun approach was to map individual genes in the hope to patent genes. Venter informed Collins his intention to seek patents for 300 genes that would serve as targets for drugs to treat diseases. In addition, the question whether the whole genome could be patented was uncharted territory.

Francis Collins

The Human Genome Project’s founding leader was James Watson, one of the co-discoverers of the structure of DNA (the double helix in 1953). Watson had the credentials to get government funding for the project; however, he was outspoken and sometimes that got him in trouble. Watson was replaced by Francis Collins in 1993, which was more cautious and diplomatic, traits that would be needed to steer the project to completion. Collins’ group did not believe that individual genes or the genome should be up for patents. The genome belonged to everyone and should not be privatized for profit. Also, there was concern that Venter’s Shotgun method would reveal an incomplete genome, one that could not be put back together.

Scattered throughout the genome are DNA fingerprints. These are repeating patterns of code that are unique to each individual (except for identical twins), hence the term DNA fingerprints. The Human Genome Project would use DNA fingerprints to break up the task of sequencing. The DNA fingerprints stood out from the random code along the genome; this provided a natural break in which the genome could be divided up, and later put back together. The genome was divided into segments and sent to 16 labs around the world. Once each section was sequenced the genome could be placed back together

The controversy and the race for the genome increased the pace of the sequencing. In the end, both sides would publish papers on a sequenced human genome. On February 15, 2001, The Human Genome Project published their results in the scientific journal, Nature. The next day Celera published in the journal, Science.

The sequenced genome is a template of a normal genome, which could be used to find abnormal genes responsible for diseases. In theory, the template could be used to compare and locate any mutant genes. This could lead to treating and curing diseases (at the genetic level) that have previously been incurable. A map of the human genome could also prevent diseases; genes that predispose individuals to attracting diseases in the future could be identified years in advance.

Out Comes the Genome

The science behind sequencing the human genome has come from a century of discoveries, starting in the late 1800s. At first, genetics was an abstract concept describing hereditary information. Although it was known that hereditary information was passed through generations, the mechanisms were unknown. Once DNA and genes were discovered, the first step to sequencing the human genome was to start with simple organisms, such as, viruses, flies and worms. Then the more complicated human genome could be dealt with. Today, a complete instruction book to make a human being has been identified; however, a complete understanding of the book is still a long way off.

In a way, the human genome is simple in its design, yet incredibly complex in length of code and number of functions. The fundamental unit of the genome is DNA, coded information like letters of the alphabet. Certain sections make up genes; these are like words or sentences. The genes are strung together in chromosomes, which is comparable to chapters in a book. The genome is everything, the whole book. The function of genes is to encode for making proteins. Therefore, genes encode messages (carried by a messenger molecule called RNA) to build proteins. The proteins perform the actual tasks encoded by the genes.

Here are some interesting features of the human genome:

  •  It contains over 3 billion letters of DNA code.
  • The DNA code is written in a 4 letter alphabet (AGCT), named after the initials of the 4 basic chemical units of DNA. If it were in book form, it would take more than 1.5 million pages to write it.
  • The structure of DNA is arranged in base pairs, strands that are connected like a spiral staircase (the double helix).
  • The total number of genes is about 20,687.
  • The genome divided in 23 pairs of chromosomes, 46 in total.
  • Human complexity arises from gene networks (more so than the number of individual genes). Genes can be turned on or off in specific situations, and work in different combinations to produce near-infinite functions.
  • Genes only make up a tiny portion of the genome (only 2%). Most of the DNA either regulates genes, has unknown functions or does nothing at all (junk DNA).
  • Part of our evolutionary past is carried in the genome, fragments of DNA that no longer serve a purpose. They are relics of DNA from ancient organisms that have gone dormant over time. These fragments vastly outnumber genes.
  • Human beings are 99.9% identical at the DNA level (a discrepancy of 1 letter in every 1,200 letters).

References: Siddhartha Mukherjee, The Gene (New York: Simon & Schuster, (2016).

DNA – Episode 3 of 5 – The Human Race – PBS Documentary, published on Mar 21, 2013. https://www.youtube.com/watch?v=MJu9dL7a3ZI


 

Evidence for the Big Bang Theory

We are all aware of the Big Bang Theory, but how much is known about the strength of the theory. For some the Big Bang is a vague and far-out idea, for others it is a T. V. sitcom. Nonetheless, it requires some background to appreciate how the Big Bang Theory became what it is today.

The Story Begins

Isaac Newton is credited for saying: “If I have seen further than others, it is by standing upon the shoulders of giants.” Newton was implying that his discoveries would not have been possible, without the brilliant people (giants) which preceded him. The Big Bang is such a theory, it was pieced together by several individuals spanning decades of work. Or perhaps a few centuries of work, it all depends on when one chooses to begin the story.

I will arbitrarily begin in 1687 when Newton published his Principia Mathematica unveiling his law of universal gravitation and his three laws of motion. Newton was the first to provide a mathematical framework to account for the effects of gravity, thus he could calculate the motion of the moon and planets. Gravity was also the force responsible for keeping objects firmly on the Earth or causing an object (such as an apple) to fall to the ground.

Newton’s laws have stood the test of time; however, they are not 100% exact and serve as a very close approximation. They are, however, practically exact for our experience of everyday events. Only in some extreme situations do they fall short. Also, Newton was forced to concede that he did not know the mechanism behind the force of gravity. In simple terms, Newton was able to calculate the effects of gravity even thought he was unable to provide a complete explanation for how gravity worked. Nevertheless, Newton’s laws were a major scientific breakthrough for its time and started the ball rolling in the right direction.

Dynamic Space

Image converted using ifftoanyIt wasn’t until 1915 when Albert Einstein came up with his Theory of General Relativity, which addressed some of the gaps in Newton’s understanding of gravity. Einstein was able to explain gravity in detail, as a consequence of curved space. The mass of bodies (such as planets and stars) bend the fabric of space, thus generating the attraction. The fact that space has dynamic qualities, which can expand and curve would later become important to the big bang concept.

Also significant, is that General Relativity predicts that the universe should be either contracting or expanding. However, in Einstein’s time the prevailing wisdom was that the universe was static and eternal. Einstein gave way to convention, and after the fact, arbitrarily added a figure in his equations known as the cosmological constant. This was a repulsive force with just the right value to counter the effects of gravity, thus keeping the universe stable. As it turned out, Einstein’s original prediction of a non-static universe was later proven correct. He then dropped the cosmological constant from his theory.

Measuring the Night Sky

After Einstein’s General Relativity it was left to astronomer Vesto Slipher, who worked at the Lowell Observatory in Arizona. Slipher took spectrograph readings of distant stars and discovered that the light emitted was moving away from us. The starlight was shifted to the red end of the spectrum. Slipher was the first to realize that receding light is red shifted and in coming light is blue shifted. This was an indication that the universe was not static after all; however, his work went unnoticed at the time. Slipher was not aware of General Relativity and his findings would only have an impact a few years later.

henrietta-swan-leavittAnother breakthrough came from a woman named Henrietta Swan Leavitt. She worked at the Harvard College Observatory as a computer, as they were known in those days. These women studied photographic plates of stars and made computations. Leavitt was able to establish Cepheid variables as standard candles; a method to determine the intrinsic brightness of a star. Cepheids are elderly stars which pulsate at regular intervals; these stars brighten and dime in a very reliable pattern. Leavitt worked out that these stars could be used to calculate distances. For the first time, there was a method of measuring the large-scale universe. Today, Type 1A supernovae are also used as standard candles. Similar to Cepheids, Type 1A supernovae are said to have intrinsic brightness, making them reliable measuring tools.

Building a Case

edwin-hubbleThe story now shifts to the Mount Wilson Observatory in California. Equipped with a new telescope Edwin Hubble was able to make use of Slipher’s red shifts and Leavitt’s standard candles. In the early 1920s Hubble discovered that some of the starlight he observed was coming from distant galaxies. Before this finding the only known galaxy was our own. Today we know that there are well over 100 billion galaxies in the visible universe alone. In an instant, Hubble had shown that the universe was much bigger than anyone had theorized.

Roughly a decade later, Hubble made an equally stunning discovery. By observing distant galaxies, he determined that they were all moving away from us. The only exception to this was our own local cluster (close enough in proximity to be held together by gravity). All galaxies were moving away from us on average. In short, the universe was expanding in all directions! Furthermore, the distance between galaxies and the speed at which they were moving were proportional. For instance, galaxies twice as far away were moving twice as fast, three times as far away, three times as fast. Interestingly, debris from an explosion shares a similar signature. This is because the further away from the epicenter the debris comes to rest, the faster it has to travel.

george-lemaitreJust as Slipher before him, Hubble had little understanding of General Relativity and failed to recognize the full significance of his discovery. It took a Belgian priest and scholar named Georges Lemaitre to put it all together. He applied General Relativity to Hubble’s findings, wound the clock backwards, and in 1931 he suggested that the universe began in a single geometric point. This was the original idea, which later became known as the Big Bang. Nevertheless, the world was not yet ready for Lemaitre’s bold idea. It took a few more decades before Lemaitre’s idea became an established scientific theory.

In 1964 the Big Bang Theory was finally confirmed by observation. Two Bell Laboratory scientists named Arno Penzias and Robert Wilson were testing a microwave detector. They were receiving interference coming from all directions. After ruling out a number of possibilities, it was determined that the signal was coming from outer space. In fact, they had discovered the cosmic microwave background radiation. They had accidentally stumbled upon the echo of the Big Bang.

The cosmic microwave background (CMB) is the remnant of light from the Big Bang. It had been predicted earlier, but now it was confirmed by observation. Due to the expansion of space, this light has been stretched to the microwave part of the spectrum. From its extremely hot beginning, the temperature of the CMB has now cooled to 2.7 degrees above absolute zero (nothing can be colder than absolute zero). No matter where we look the temperature of the CMB varies by less than a thousandth of a degree. These temperature measurements imply a common origin. How else could microwave radiation, separated by vast distances, have practically the same temperature (everywhere) unless it originated from a common event?

Evidence for the Big Bang (Recap)

  • Receding Starlight- By measuring the red shift of distant stars Vesto Slipher discovers that distant stars are moving away from us, suggesting that the universe is not static.
  • Establishing Cepheid Variables- Henrietta Swan Leavitt finds a way to make use of pulsating stars to measure distances in the large-scale universe.
  • Expanding Universe- Edwin Hubble discovers that the universe is expanding proportionally in all directions.
  • Compatible with General Relativity- Albert Einstein’s famous theory predicts a non-static universe and allows for space to bend and expand (necessary for the big bang concept).
  • The Smoking Gun- Arno Penzias and Robert Wilson stumble upon the cosmic microwave background radiation (the echo of the big bang). The Temperature of the CMB varies by less than a thousandth of a degree.

Note: There are also other pieces of evidence which point to a Big Bang that requires a background in particle physics to appreciate (which I do not have), so I have left it out here.

Interesting Facts About the Big Bang

  1. The Theory begins a tiny fraction of a second after the bang. The known laws of physics cannot be applied prior to the theoretical beginning of time. What happened before is uncertain.
  2. The Big Bang created time and space as we know it, calling into question the idea of a before.
  3. At the Big Bang the universe was at its hottest; it has been cooling ever since.
  4. At the beginning, the universe was in its most orderly state. From the moment of its origin, it has been moving towards higher disorder.
  5. The universe was in its simplest form at the Big Bang; it has been growing in greater complexity since its birth.
  6. There is no such thing as the center of the universe. From any given galaxy an observer would see the same thing; all galaxies would be moving away on average.
  7. Galaxies don’t move through space, it is the space itself which is expanding and carrying the galaxies along.
  8. The term ‘Big Bang’ was coined by astrophysicist Fred Hoyle. It was meant as a put down for a theory he never accepted and the term stuck.
  9. Arno Penzias and Robert Wilson won a Nobel Prize for their discovery of the CMB; something they were not even looking for.
  10. If you tune a T. V. to a channel that is not broadcasting, 1% of the snow on the screen is due to the cosmic microwave background. So if you ever complain that there is nothing to watch on T. V., you can always disconnect the cable and watch the Big Bang.

 

References: Bill Bryson, A Short History of Nearly Everything (London: Black Swan, 2004).

Mark Henderson, Joanne Baker, Tony Crilly, 100 Most Important Science Ideas (United States: Firefly Books, 2011).

Dec. 30, 1924: Hubble Reveals We Are Not Alone, Randy Alfred, 12.30.09, https://www.wired.com/2009/12/1230hubble-first-galaxy-outside-milky-way/

Scientific America, What is the Cosmic Microwave Background Radiation? October 13, 2003, https://www.scientificamerican.com/article/what-is-the-cosmic-microw/