Tag Archives: Richard Dawkins

Life and Death in the Universe

It is quite common to think of life and death as two completely opposite realities; one revered and the other dreaded. However, if we thoroughly examine what is really going on, a different picture emerges. Life and death are more related than they first appear. These two realities actually co-exist in complex ways.

The chemistry necessary for life has its origins inside the core of stars, and the eventual death of stars is fundamental to life. The early universe consisted of atoms of hydrogen, helium and trace amounts of lithium. All other heavier elements were forged by stars.  For about 90% of a star’s life it generates its energy by fusing hydrogen to make helium. Eventually it runs out of hydrogen, and begins to fuse its stocks of helium, making yet heavier elements. The fusion process continues producing heavier and heavier elements until the star has nothing left to burn. Of course all this takes anywhere from about a million to hundreds of billions of years, depending on the size of the star. The larger the star the faster it burns, resulting in a shorter life span. When a large star runs out of fuel a delicate balance is lost between gravity, which wants to keep material in, and the outward pressure generated by thermonuclear fusion in the core of the star. It collapses in on itself and then recoils outward in a gigantic explosion called a supernova.

A supernova explosion releases the elements created within the star, and the extreme heat and energy of the explosion creates the remaining elements in the periodic table. Each generation of stars adds to the concentration of elements in the universe, until there are enough to support life like we have here on earth—essentially we are all made of star dust. If it were not for the death of stars, life as we know it could not be.

When life began on earth so did the evolutionary process, where death also plays a significant role. The complex and intricate web of life was made possible by about 3.8 billion years of evolution. The powerful forces of natural selection have shaped life according to its environment. Death is the means by which natural selection removes individuals within species and eventually entire species. Throughout the process of evolution death is there every step of the way. For species to evolve and diverge into more and more complex life, each generation must die, giving way for the next to live. Evolution is a multi-generational process. Without death, complex life—like human beings—could not have evolved from simpler life, and life as we know it could not be.

Death is also present within living organisms, in the form of cell death. Cells are the basic unit of all life. Some organisms consist of only one cell, however, plants and animals are made of numerous cells. For instance, the human body is composed of about 100 trillion cells. A cell is alive as you and me; it breathes, takes in food and gets rid of waste. It also grows and reproduces by dividing. Each new cell is created by a pre-existing cell, and like all other life, it dies. Each day several billion cells in the human body die and they are replaced by new cells. The life span of cells varies widely. White blood cells live about 13 days, red blood cells about 120 days. On the other hand, liver cells live about 18 months and nerve cells can live approximately 100 years. Even in a healthy living human body death is always present.

Contrary to conflicting emotions caused by life and death, they are clearly not opposites, but actually co-creators. All living things carry death with them, and eventually, they will all die. As much as death is dreaded, it is necessary for life and a completely natural process. Instead of thinking about death as some kind of cosmic accident—something that shouldn’t be—perhaps we can view death as something that is compatible with life. There are no free rides in life and regrettably, the price for life is death. If it were not for the reality of death, we could not have the experience of life. It’s that simple.

If one considers the universe as the source of all life, then what do we make of its parts? By labeling the parts we create individual forms that are not completely individual. Every part is related to other parts. The relationships amongst the parts are so intricate that they depend on each other for their very existence. The circle of life is relational between living and non-living things—non-living things such as sunlight, water, oxygen and living things like microorganisms, plants, animals and humans. We are humans, so it stands to reason that we are partial to our own kind. However, our affinity for the human species does not change the reality of life and death, which is natural to all living components of the whole. Why would nature make an exception for human possibilities after death, which is not granted to other species? All life comes into being from life and in the end, goes back into life—there are no exceptions.

From everything we can see it appears that the momentum of life sustains the whole and that individual life is expendable. The natural cycle of birth, growth, decline and death repeats indefinitely, all the while preserving the whole. Living organisms are necessary for a living planet, but no one organism is essential. You could think of individual life forms as leaves from the same tree. A living tree needs leaves, but no single leaf is crucial. As long as the falling leaves are replaced with new healthy leaves, then the tree is sustained. This does not mean that any given leaf is not valuable to the tree. Each leaf contributes to the well-being of the tree. It serves the tree (the whole), and then dies in order to allow other leaves to take its place. Keep in mind that it doesn’t stop there. The tree has a life span of its own. The tree serves the forest as the leaves serve the tree.

In the face of the observable facts of life and death, why then do we ask, what happens after death? Is it because the thought of nonexistence (for eternity) is just about unthinkable? How does one handle the possibility that “what we see is what we get”—that all individual life may be a “one shot deal.” Perhaps a change of perspective can be helpful. We need not dwell on nonexistence, but can be comforted by considering the improbability of us being here in the first place. Richard Dawkins, in the first lines of Unweaving the Rainbow, clearly points out that we have won the lottery of life. He writes:

“We are going to die, and that makes us the lucky ones. Most people are never going to die because they are never going to be born. The potential people who could have been here in my place but who will in fact never see the light of day outnumber the sand grains of Arabia. Certainly those unborn ghosts include greater poets than Keats, scientists greater than Newton. We know this because the set of possible people allowed by our DNA so massively exceeds the set of actual people. In the teeth of these stupefying odds it is you and I, in our ordinariness, that are here.”

Then there is the approach taken by Mark Twain as he dismisses the fear of death altogether: “I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it.” Obviously Twain was not expecting much after death. If one takes that view, there is no reason to be traumatized by the second stage of non-existence if the first stage caused us no harm.

However logically fitting, I am aware that for many people Twain’s perspective will not be emotionally satisfactory. If hope for an afterlife is not found in the empirical evidence, then where does one find it?  Despite mankind’s tremendous strides of knowledge, we still don’t know what we don’t know. Mystery will always be part of life. The unknown can be an uncomfortable place to be, however, when it comes to the afterlife; the unknown could provide a ray of hope. Nature may open the door just a bit to an otherwise seemingly bleak outcome. If we are to have any experiences after what we consider our life, then a transformation completely unknown to us (or science) must be in store.

If one looks to nature, amazing transformations happen all the time. I will highlight a few of them, but I am certain that you can think of many more. 1) There is perhaps no greater transformation than the life cycle of stars I described earlier. The fact that all life is made possible by exploding stars is astounding to say the least. 2) Imagine if an unborn child could be completely aware in the mother’s womb. There would be nothing in its surroundings that could possibly prepare it for the world to come. 3) If we did not have the experience of butterflies, we could never imagine the potential in a slow and grounded caterpillar. The transformation from caterpillar to a butterfly could not be predicted from everything we see in a caterpillar. 4) If we had no experience of spring, the falling leaves of autumn would be interpreted much differently. There would be no way of knowing that the trees would sprout fresh leaves after a long cold winter.

The belief in an afterlife is nothing new and it is still quite widespread today. Although I wonder how many people have actually thought it through, that is, what life after death might entail. Does it mean eternal life? If so, how do we account for the time before we were born—that period of time is also part of eternity. Where will we go? And what will we do if we get there? What are we going to do with all that time? There are some people that don’t know what to do with themselves on a rainy day; how will they handle eternity? After a few thousand years, might it get a little tedious? Also, I wonder what kind of experience we would have without a physical body—without a brain to think, eyes to see and hands to touch.

We all accept that life is a natural process, yet many people believe that something spooky takes over in the afterlife. They view life as natural, and the afterlife as supernatural. But is this a rational way of thinking about life and death? Life and death are both natural processes. So it stands to reason that a natural process will determine what happens after death. Regardless of our hopes or fears, our fate lies in what the universe has and will allow—how could it be otherwise? Acceptance of the mystery of death appears to be the only reasonable approach to the question of life after death.

I will conclude with a fitting gardening analogy. In the late fall, when the gardening season is winding down, it’s the time to plant tulip bulbs. From experience I know what the bulbs will bring to the gardens the following spring. Yet there is nothing in the dull brown bulbs that would indicate that colorful tulips are in the offing for next year’s gardens. The brown bulbs will transform into bright flowers after a long winter in the frozen ground. This transformation happens not because of any hope, belief or wish on my part, it happens as a result of a natural process. The bulbs will grow into the only thing they can become—tulips. On the other hand, if I were to bury a few small stones into the ground, they will remain lifeless, regardless of any wishes on my part.

 

References:  Richard Dawkins, Unweaving the Rainbow (New York: Houghton Mifflin Company, 1998), 1.

Goodreads, http://www.goodreads.com/quotes/show/25647,  August 27, 2011, October 29, 2011.


 

Evolution in a Deck of Cards

dnaFor some people the process of evolution is a difficult concept to grasp. For sure, evolution is a counter-intuitive idea. We don’t experience evolution in our daily lives. It only makes sense when we look beyond the surface of things; evolutionary concepts require a long-term view. Perhaps the biggest stumbling block towards understanding evolution is the disconnection between our lives and the evolutionary timeline. If we compared the history of the Earth to the length of a person’s arm, all of human history could be wiped out with a single stroke of a nail file.

Still, despite much scientific evidence for evolution, many people are not convinced. They may look for supernatural explanations for the existence of life, or conclude the question is beyond human understanding. How is it possible that all life evolved from single cell organisms? How did even a single cell evolve? And how did life diversify into millions of species? To get a grasp for evolution we need to shift our attention from the finished product to the process.

Evolution is indeed a process, which is ongoing. And it has no finished product in mind. Evolution can be defined as gradual changes and development over time. However, there is a mechanism that generates those changes, which Darwin called natural selection. Perhaps Darwin’s greatest insight was recognizing the power of natural selection. It is similar to an algorithm, because nature selects positive survival and reproductive traits. It also discards negative survival and reproductive traits. The process is cumulative and continuous from generation to generation. Once the process began improvements to life were inevitable, even though specific outcomes were not guaranteed.

The Card Game

deck-of-cardsAs a thought experiment we can use the analogy of a card game to show how natural selection works. The analogy is not perfect, because there are subtleties in evolution that are more complicated. The exercise is meant to provide a simple analogy for natural selection.

Although it was not known in Darwin’s time, we now understand that life is controlled by genetic information. Essentially, it is genes that are passed on through the generations. In our analogy it is more useful to view the cards as genes, and a hand of cards as a group of genes (or an individual life form). The game has 4 basic ground rules:

1) The deck of cards represents the gene pool: We need to assume multiple decks, because the same genes exist simultaneously in other individuals and are copied many times over. Each card carries information, which may or may not survive each reshuffling. For example, the 5 of spades is one gene and the 10 of harts is another gene.

2) The shuffling symbolizes the generations: Every time the cards are shuffled and handed out, it’s like a new generation. The cards are always being rearranged in different combinations.

3) The players act as natural environments: The players select which cards they want to keep. Just like nature favors different genes in different environments, each player will select different card combinations. In our game some players are playing poker, others cribbage and others bridge. For example, the poker player represents a specific environment, such as an ocean.

4) The goal of the game is to collect the best hand possible: Every player keeps the cards they want, and discards the ones they don’t want. The poker players will collect different card arrangements than the bridge players. But all the cards come from the same card pool. This selection process is done with every deal.

Stable Arrangements

For natural selection to work the process had to work in the primordial period. The creation of life on earth probably did not start in an instant of time. It is more likely that the building blocks (atoms and molecules) were assembling for a long time; nature was favoring stable patterns. Richard Dawkins points out in The Selfish Gene:

“The earliest form of natural selection was simply a selection of stable forms and a rejection of unstable ones.”

microscopic-lifeJust like today, things that last are stable arrangements of atoms (whether living or nonliving). Consequently, life began in a fuzzy period where forms were interacting and assembling. At some point the forms acquired the ability to replicate (with occasional errors). The errors are necessary for evolution; this would be like randomly adding new cards to the deck (like a 15 of diamonds). Eventually, simplicity grew into increased complexity; small patterns grew into larger patterns. This is also what happens with the game of cards.

Exact patterns would be difficult to recognize in the first few hands. Nevertheless, there would still be cards that are more desirable than others. Generally, an ace or a face card is better than a numbered card. But there are exceptions, which depends on the type of game and the combination of cards. With each reshuffling patterns will emerge, where eventually an onlooker could identify the game each player is playing. This is analogous to the time when stable patterns would be recognized and classified as organic life (that’s if someone where watching).

Reshuffling the Deck

We can now see how the process of reshuffling the deck, selecting and discarding the cards would work. It would not take too many hands to achieve almost perfection. Each player would select for their specific game, just like nature selects for its specific environment. All the hands would contain some of the same cards, but in different combinations. Nature mixes the genes in the same way.

cards-in-rowsThe power of natural selection is the continual selection and discarding process, which occurs at unfathomable timescales. Successful genes are kept from generation to generation, random gene mutations are added, and remixed in endless combinations. Only the best of the best survive the process. That is why an after-the-fact view of evolution can be deceiving. Incredible order can emerge without a design and a planned outcome.

Our card game never ends; the players are always looking to make improvements, no matter how small. Many poker players will end up with a Royal Flush (the best possible hand). Bridge hands will end up with every card of the same suit or all aces and face cards. This is where our analogy doesn’t quite measure up. In real life the environments constantly change, which drives evolution to adjust. It’s like occasionally changing some rules to each card game, which will force the players to change their hands.

I hope this thought experiment helps to conceptualize how evolution can accomplish a seemingly daunting task. The basics of natural selection are only a starting point towards understanding evolution. Evolution is a messy process of trial and error, an incalculable amount of trials and errors, which muddies the water. Yet the time involved is critical to the process (more than 3 billion years).

Knowledge of evolution is fundamental towards understanding all life on earth. The life sciences could not progress without it. Our own bodies function as a result of evolution and much of human behavior has evolutionary roots. It has been said that, “Evolution is not something you believe in; either you understand it, or you don’t.”

 

References: Richard Dawkins, The Selfish Gene (Oxford: Oxford University Press, First published 1976, Second edition 1989, 30th anniversary edition 2006).


 

The Evolutionary Arms Race

Evolution is guided by an intense competition for survival. When one individual or species gains an advantage, natural selection will cause competitors to catch up. Because there is always competition, over time species are pushed to improve, and a stable balance is generally established. It would be more economical for all to keep things as is, but that’s not how it works. Evolution requires change, and change is continual. An evolutionary arms race is an unavoidable consequence of evolution. To see how this works let’s look at a few examples:

The Tree Canopy

tree canopyHave you ever wondered why mature trees in a forest are roughly the same height. Given the fact that there is tremendous diversity in nature, why not have trees of various heights. Although different species can naturally grow to different heights, they are not found in the same forest environment. The reason is due to a race upward for sunlight. All the trees in a forest are competing for solar energy.

Forests could easily have been populated by low growing trees, at an energy cost savings for all. But nature has selected the trees that gained a competitive advantage (those that grew a little taller). The other trees were forced to keep pace or be left behind. Trees have evolved to grow higher because competing trees were also reaching for sunlight. Individual trees compete with their own species and also with other species. It does not matter whether it’s an individual or an entire species, those that cannot keep pace will not be successful at passing on their genes. In The Greatest Show on Earth, Richard Dawkins writes:

“In fact, what we actually see is a forest in which each tree species evolved through natural selection favouring individual trees that out-competed rival individual trees, whether of their own or another species.”

Of course, this was a slow process that was played out over evolutionary time and at the genetic level. Genes favorable for growing tall trees were passed on, because the trees that contained them were more likely to survive and seed the next generation. This competition continued for millions of years until an optimal height was achieved. There is a limit to the amount of energy a tree can divert towards growth, and a limit to the height a tree’s structure can support. Eventually the forest settled at a maximum height, when it was no longer an evolutionary advantage to grown higher.

Running Speed of Predator and Prey

predator and preyThe relationship between predator and prey is a complicated one, with each trying to outwit the other. Both predator and prey will evolve their own skill set. Some traits are specific for catching prey, while others are specific for avoiding predators. But there is an overlap as some traits are shared. For example, let’s consider the running speed of animals, which is just one of many skills needed by both sides. Running speed is valuable for both predator and prey.

Predators like cheetahs have evolved to run faster and faster, while gazelles (their prey), have also evolved to run faster. The end result being that neither gains ground. Richard Dawkins explains:

“Natural selection drives predator species to become ever better at catching prey, and it simultaneously drives prey species to become ever better at escaping them. Predators and prey are engaged in an evolutionary arms race, run in evolutionary time.”

Running speed is important, but it is part of a delicate balance with other important traits: such as endurance, strength and eyesight. The evolutionary winners will be those that get the balance right, yet running speed will be in the mix. Although less obvious, it is just as important for an individual to outrun individuals from the same species. For instance, a gazelle which runs slightly faster than the average gazelle will escape the predator at the expense of the slower gazelles. The fastest gazelle in the herd will be favored just as much as the overall speed of the herd.

Bacteria, Viruses and Human Defenses

In the two examples listed above (the tree canopy and the running speed of predator and prey), evolution acted at the subconscious level. No conscious agent designed any particular trait. The arms race was fought by natural selection. Because of our knowledge of viruses and bacteria, another level of the arms race is added. That is, the production of vaccines and antibiotics.

The Influenza Virus and Vaccines: In 1918 the Spanish Flu was responsible for the death of about 50 million people (the worst pandemic in world history). The pandemic struck in the last year of World War 1. The world war was critical in spreading the disease as masses of soldiers moved across the globe. The poor living conditions and ill-health of the solders may also have contributed. Pandemics have reoccurred throughout history, and experts caution that it could happen again. Different strains of the flu still come around every year. Today, much progress has been made in developing vaccines, which along with sanitation is our best defense against viruses.

influenza virusViruses attack the human body by invading cells. The immune system produces antibodies that fight off the virus. Therefore, a specific virus can only infect a host body once. However, viruses evolve very fast and are inaccurate replicators. As a result they evolve into different strains that can evade the human immune system. Viruses are not trying to change; they change because of chance mutations. The ones that are resistant to antibodies populate. It may appear that viruses are attempting to outsmart the immune system, but they simply evolve through the process of natural selection in their environment.

An arms race between viruses and their host is ongoing. Each year experts predict which strains of influenza will be dominant, and they product vaccines in accordance. It is an educated guest, which sometimes they get right and sometimes they don’t. Except for particularly dangerous strains, such as the H1N1 pandemic in 2009, it is debatable whether wide-scale vaccinations for the flu are effective or necessary.

The arms race will surely continue. We have the natural competition between viruses and antibodies, and the additional armament of vaccines. The speed in which viruses replicate and evolve insures that they are here to stay. Humans are faced with every-changing viruses, which we have to keep pace.

Bacteria and Antibiotics: Common bacterial infections for today’s standards were often fatal in the past, but thanks to antibiotics are now easily treatable. Antibiotics can kill bacteria inside a human body, however it kills good bacteria as well as bad bacteria. Good and bad are subjective descriptions based on their influence on humans. Bacteria are single cell organisms that have evolved to live in symbiotic relationships with humans (bacteria cells in the body outnumber human cells). The beneficial bacteria will defend its turf against invading bacteria, and thus can be considered as part of the immune system.

bacteriaAlthough the antibiotics are engineered to target the invaders, they are not perfect and they kill some of the symbiotic bacteria. Because antibiotics have been widely used, this has changed the balance of bacteria that dwell in humans. The effects of these changes is not clear, but there is evidence it can contribute to some diseases.

When an antibiotic is used to treat an infection it does not kill all the invading bacteria. And similar to viruses, the bacteria develop resistance to the antibiotic. The surviving bacteria will multiply and evolve until that specific antibiotic becomes ineffective. New antibiotics need to be developed in order to keep up. Even though a patient is cured, surviving bacteria can still spread to other people. Once again, the battle is similar. Unwanted bacteria verses beneficial bacteria and human ingenuity. The arms race is on with no end in sight.

 

References: Richard Dawkins, The Greatest Show on Earth (New York: Free Press, 2009), 380, 381.

Big Picture Science, Skeptic Check: Evolutionary Arms Race (June 22, 2015).


 

Memes that Make the World

dnaMemes are the cultural equivalence of biological genes. The term meme was coined by Richard Dawkins in the 1976 publication of The Selfish Gene. The premise behind The Selfish Gene is that Darwinian natural selection acts at the level of genes; ultimately, it is genes that guide evolution by controlling the traits in bodies that contain the genes. In order for natural selection to work, there needs to be something like DNA and genes in which information is replicated. There also requires some copying errors so that small variations can occur from one generation to the next. Memes also fit that description.  Memes are ideas that survive in human brains, and similar to genes they can be copied and passed on.

There are many different types of memes: for example, songs, hairstyles, phrases, beliefs, words and manners. In today’s world the word meme has become popular on the internet. Whenever we here that something has “gone viral,” it is often referred to as a meme. In most cases the meme is something trivial, such as a piece of music, a surprising story or a silly video. It spreads rapidly, but usually it will not last very long. However, other memes have a far greater impact on society, and become part of cultural evolution. Or you could say that the memes guide cultural evolution, much like “the selfish genes.”

The Meme Codes

Language may be the key ingredient that allows memes to spread. Like a DNA code, language is also coded information. It comes in the form of letters and words. Speech is one variation of language, which is surely copied, but written language is even more stable as a replicating code.

We can all recall numerous instances when an event is passed from one story-teller to another. In most cases the details in the story changes until we have conflicting accounts. The information is transferred from one individual brain to another, but memories are not perfect and the copies are not exact. However, written language can exchange hands without the story being altered. The stories still have to resonate in people’s brains and the interpretations will vary, but the fidelity of the written word is higher than the spoken word.

Music is another meme that has two routes of transition. 1) Tunes are passed on by hearing the sounds and attempting to duplicate them. If a tune sounds appealing there is a higher chance it will be copied. As time passes the tune will change a bit. 2) Music can also be written in sheet music using mostly symbols. Like written language, the written music will remain close to the original form. One piano player following a sheet music may sound slightly different from another player. But as the song is played by many piano players it will not change significantly.

MathematicsMathematics is a meme of numbers, symbols and diagrams. It is more accurately copied than language, because there is less ways it can be altered. 2 plus 2 will always equal 4. There is an order in mathematics that is self-correcting, although concepts evolve over time with new applications. Language, music and mathematics are coded information that are replicated and evolve in human brains.

Marching on Through the Generations

The idea of generations is different for memes than it is for genes. A different generation for a gene is an offspring, which will carry some of the same genes. For memes, there is a double meaning for a generation. A meme can be passed on from person to person in a single day, or survive for many years. For instance, I tell you an idea, and you share it with someone else. That’s 3 generations, from me to you to someone else. In this scenario the meme could evolve like microbes, where mutations can occur in a matter of days or weeks. The idea will spread quickly, but each person could add to it or leaves something out; these would be mutations of the original idea.

There are also memes that are handed down in the traditional sense of generations, that is, from a father to a son. These memes are long-lasting and could become cultural norms or traditions. For example, holidays are memes that have survived for many years. In many cases the original customs and purposes behind the holidays are lost or changed (at least by some people). Still the celebrations continue and millions of people observe the holidays. Do we know why the colors of Christmas are red and green, or why the Easter Bunny gives out eggs, or why children get candies at Halloween?

Memes Working Together

Similar to a single gene, a single meme has a minor impact. Genes are effective when they combine with other cooperative genes. Memes also combine with compatible memes and also compete with other memes for attention in human brains. One could think of different ideas as a meme pool, which people select (consciously or subconsciously). The memes that work well together will be more likely to be copied. A meme-complex could be copied because it benefits society, but it could also be copied because it aids the propagation of itself. It is not a guarantee that humans will make the best possible choices; there are equal reasons to believe that we will choose unwisely.

football stadiumA sport is an example of a well-established meme-complex. The North American culture is fascinated with sports on a daily basis. Many play sports at local venues; many more watch sports at stadiums and on televisions. What memes could be working together? How about this list: (memes for running, throwing and catching), (memes for competing, winning and losing), (memes for watching, cheering and analyzing). Any stable and self-replicating cultural norm will consist of mutually beneficial memes.

History-Making Memes

Recorded human history is a story of culture. The ideas that populations believed in mass, whether real or imagined, has fueled the events of history. The most influential ideas (memes) have won out over other ideas. Not always because they were better ideas, but because they were more effective at spreading from brain to brain. Historian Yuval Harari writes in Sapiens: A Brief History of Humankind:

… history’s choices are not made for the benefit of humans… There is no proof that cultures that are beneficial to humans must inexorably succeed and spread, while less beneficial cultures disappear.

Religion symbolsThe cultural enterprises that have dominated human life contain large numbers of memes. Such examples are: religion, war, agriculture, kingdoms, art, music, politics, nationalism and science. No one can tell if the history-making memes (or meme-complexes) took the best course of action for humanity. Some did and others did not. Nevertheless, they had the attributes to enter human brains and to be imitated. Our modern culture is formed by memes with the same qualities as the historical memes. That is, copying fidelity, with variation, and wide-spread selection from the meme pool.

 

References: Yuval Noah Harari, Sapiens: A Brief History of Humankind (Canada: Signal Books, an imprint of McClelland & Stewart, 2014).

Richard Dawkins, The Selfish Gene (Oxford: Oxford University Press, 30th anniversary edition, 2006).

Richard Dawkins | Memes | Oxford Union, Published on Feb. 26, 2014. 

Susan Blackmore sobre memes e “temes” – TED Legendado, Published on Jul. 13, 2013.


A Gene Centered View of Natural Selection

Natural selection was Darwin’s term for the mechanism of evolution. In the slow process of evolution nature selects which organisms adapt to their environments successfully (that are most successful at surviving and reproducing). But what is the unit of selection? Is it the species, group, individual or gene? At what level do natural environments shape the evolution of life? Could there be a blending of different units or is one dominant? For example, do species evolve as a consequence of group selection, or do groups evolve as a result of individual selection; or do genes ultimate control the process?

Richard DawkinsThese questions have been debated by biologists and academics for a long time. Richard Dawkins, with the publication of The Selfish Gene, sided on the gene centered camp. The idea of gene selection had been proposed in scientific papers: First by Bill Hamilton in 1964 and then by others, such as John Maynard Smith and Robert Trivers in the early seventies.

Published in 1976, The Selfish Gene placed gene selection into the public sphere by getting beyond the technical aspects of the scientific papers. Dawkins’ book was accessible to a general audience, and has been influential in shaping evolutionary thinking (the 30th anniversary edition was published in 2006). It was, however, controversial as much for its implications as for the gene centered view it supported. According to Dawkins, the book was misinterpreted and used by some groups as biological justification for selfishness in humans; but his intention was to explain how natural selection works, not how people should behave. Dawkins clearly points this out in the first chapter of the book:

“I am not advocating a morality based on evolution. I am saying how things have evolved. I am not saying how we humans morally ought to behave.”

The Metaphor

The title, The Selfish Gene, is a metaphor for how genes propagate. By controlling the traits of organisms, genes influence their own survival. The genes that aid in survival and reproduction are more likely to be copied in future generations. In that sense the genes are selfish and potentially immortal (in the form of replicas), while the bodies that contain them are mortal. Dawkins writes:

“Individuals are not stable things, they are fleeting. Chromosomes too are shuffled into oblivion, like hands of cards soon after they are dealt. But the cards themselves survive the shuffling. The cards are the genes…They are the replicators and we are their survival machines. When we have served our purpose we are cast aside.

genesThe selfish gene metaphor, though powerful, has its limitations; a single gene can’t do very much. Genes interact with each other and combine in complex ways to give rise to physical traits. It is essentially groups of genes that survive (genes that work well together). Therefore, a successful gene can be defined as a portion of genetic material that survives through a number of successive generations.

 Explaining Altruism

“Survival of the fittest,” that is the popular catchphrase for evolution. But an analysis of the mechanisms of evolution requires that we ask: the fittest what? For Darwin, it was the fittest individual that would survive and reproduce. In the middle of the 21rst century, biologists were reintroducing and debating Darwinian ideas. Group selection (the idea that the fittest groups would survive) was gaining popularity. The propagation of the species was the consequence of the fittest groups. However, some biologists were pointing out that group selection was inadequate to explain altruism in animals.

Altruistic Behavior in  Animals

Dawkins is a zoologist by training, and The Selfish Gene focuses mainly on the role of genes in animal behavior. He analyses animal behavior in a variety of species, and points out the correlation between altruistic behavior and relatedness. In other words, the closer the relationship (in terms of shared genes) the more altruism we can expect to see. In this view the genes are at the core of the altruistic behavior, as they aid in the survival of copies of themselves.

zebrasWhen an animal acts altruistically, it appears that the animal is sacrificing some survival need in order to increase the chance another will survive. It does not matter how small the sacrifice is, because a number of small sacrifices can accumulate over time, and also can be reciprocated. The group selection hypothesis interprets altruism as benefiting the group, and in the long run, these groups will be more successful. However, others claimed that selfish individuals would undermine the altruistic group. The selfish individuals within the group would exploit the altruistic system, eventually winning out. The struggle for existence would favor the selfish individuals over the altruistic individuals.

Dawkins argues that seemingly altruistic behaviors can be interpreted differently from a gene centered view. From the gene point of view, the act is still selfish because it aids exact copies of itself (in the form of children, siblings, cousins and so one). Animals are sometimes altruistic because they are programed by their genes to be so. Whether to be selfish or altruistic is a delicate balancing act that is ultimately guided by the genes chances of survival. In addition to helping close relatives, individuals are also dependent on groups. Therefore some consideration for the well-being of the group would likely come into play.

The Social Insects

Perhaps no other example of altruism in animals is as evident as in social insects. This is probably the best example of which a gene centered view of natural selection is adequate. Honey bees, wasps, ants and termites are familiar social insects, and they live in large colonies. The colony functions as a highly organized unit, where each individual has a specific role. Although the roles vary, they can be broken down into two main categories: Carers and bearers. The carers are sterile workers; the bearers are the reproductive females (queens) and reproductive males (drones or kings).

In most species each individual shares in the caring and bearing roles (not necessarily equally). But with social insects it is clearly divided. The sterile workers will devote their lives to providing and protecting the reproducers, even to the point of suicidal actions. This is what we observe when a bee stings a perceived threat to the hive. The bee will almost certainly die.

With an individual selection view, we would not expect suicidal behavior to evolve, because there is nothing to gain for the individual. However, the fact that the workers cannot bear offspring of their own, self-sacrifice for the good of the colony aids in the survival of their genes (shared genes with the reproductive members of the colony). From the gene centered view, what really matters is not just reproducing offspring, but assisting the survival of one’s own genes. There are many strategies in which this can occur (usually a balance of risk and reward). The triggers for the behaviors are surely subconscious. You could say they are controlled by the genes, or call it instincts.

Are Genes Really in Control?

Although there are mountains of evidence that shows life does evolves, determining the level of selection is tricky; it seems like a matter of interpretation. It is not hard to see how each unit of selection would naturally influence the others in the same way (either positively or negatively). For example, if the fittest individual is selected, it will aid its group, species and genes to propagate. We could change the last sentence by randomly shuffling the units (individual, group, species and genes) and it would still hold true.

Maybe natural selection is a complicated process that includes several units of selection. Species, groups, individuals and genes are likely interconnected in ways that are difficult to quantify. I suspect that this issue is not completely resolved among scientists. Nevertheless, I find that the gene centered view is both fascinating and compelling. It is a somewhat counter-intuitive way of looking at evolution, and yet upon closer examination it makes so much sense. Logically, it all hangs together.

 

References: Richard Dawkins, The Selfish Gene (Oxford: Oxford University Press, 30th anniversary edition, 2006).

Beautiful Minds: Richard Dawkins, Published on April 25, 2012. BBC4 https://www.youtube.com/watch?v=C2I8f4lpBLU